
c© 2019 Debjit Pal



SCALABLE FUNCTIONAL VALIDATION OF NEXT GENERATION SoCs

BY

DEBJIT PAL

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Associate Professor Shobha Vasudevan, Chair
Professor Wen-mei Hwu
Professor Deming Chen
Professor Sarita V. Adve
Dr. Avi Ziv, IBM Research, Haifa



ABSTRACT

System-on-Chips (SoCs) constitutes the primary backbone of modern em-

bedded computing devices including many safety-critical applications e.g.,

autonomous vehicles, health care systems. The presence of any undetected

bugs in these systems would have aberrant cost both in terms of safety and

reliability and can cause loss of property or life. Hence, SoC validation is a

crucial task to ensure the functional correctness of an SoC. The sheer size,

presence of hundreds of concurrently executing heterogeneous IPs, vertical

integration of SoC components e.g., hardware/firmware/software to realize

multiple functionality, and application-level relevance of components present

a new spectrum of validation challenges that have rendered the traditional

microprocessor validation paradigm moot in the context of SoC validation.

The challenges include observability enhancement and debug and diagnosis

under the constraint of vertical integrations, identifying high-quality veri-

fication artifacts among others. In industrial practice, SoC validation is a

manual, unsystematic, and ad hoc process that heavily relies on the exper-

tise and the creativity of the validator. Consequently, there is an urgent need

to develop scalable and efficient algorithms of industrial relevance to address

this massive ongoing challenge of SoC validation.

This dissertation makes contributions to both post-silicon and pre-silicon

validation of SoCs, with highly impactful contributions to next-generation

post-silicon SoC validation. We use top-down analysis, a higher level of ab-

straction, and application relevance as the key ideas to automate post-silicon

observability enhancement for industrial scale SoCs and scale observability to

design that is more than 300× the size of designs that have been presented

in the academic literature so far. Our observability enhancement solution

can be applied at the netlist-level, behavioral level, and at the system-wide

application level to select high-quality signals that are most beneficial for

post-silicon debug and diagnosis. We apply a feature engineering based ma-
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chine learning technique on the observed signal data to develop an automatic,

scalable, and efficient post-silicon debug and diagnosis solution. The key idea

is to learn the correct and erroneous design behavior automatically from trace

data without prior design knowledge. We believe our debugging solution can

automate post-silicon debug and diagnosis, where manual debugging is the

norm. The quality of SoC verification and validation heavily depends on the

quality of verification artifacts e.g., assertions. To automate and expedite

identification of high-functional coverage assertions that are useful for re-

gression analysis, localization, etc., we have also developed a comprehensive

ranking scheme for assertions. The key idea is to identify assertions that

capture important design behaviors by analyzing the design source code.

Our SoC validation solutions are scalable and efficient. We consistently

show orders of magnitude speedup improvements over the state-of-the-art

while objectively improving quality of results. We have shown that going

forward application-level analysis is the key to scale post-silicon validation

to industrial scale SoCs. Our proposed validation solutions can plug into the

existing industrial validation process to introduce automation in the current

unsystematic, ad hoc, manual settings with multiple order of magnitudes of

benefit.
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CHAPTER 1

INTRODUCTION

1.1 SoC verification and validation

The ubiquitous role of System-on-Chips (SoCs) in modern societies, as well as

the increasing reliance on SoCs in safety critical applications like autonomous

vehicles and health care has unprecedented implications for their safety and

reliability. The cost of an undetected bug in these systems is much higher

than in traditional processor systems – it may not simply mean an erroneous

result or reduced performance; it could mean the loss of property or life.

Even the benign effects of a functional bug in say a navigation system, an

IoT device or a smart phone, could be very disruptive and inconvenient.

Verification and validation, or the process of ensuring functional correct-

ness, therefore, is more critical to the SoC life cycle now than ever before.

There are two phases in SoC validation (c.f., Figure 1.1 and Figure 1.2). One

is the pre-silicon verification phase, and the other is the post-silicon valida-

tion phase. Pre-silicon verification, as is well known, is critically important

to the functionality of the SoC and ensures the absence of design bugs. Post-

silicon validation of SoCs, is the “gating stage” before a decision is made to

continue mass fabrication or discard the SoC. The importance of both types

of verification in our society is significant,1 due to the impact it can directly

have on our lifestyle and productivity.

Both these phases of verification have always been massively challenging.

In addition, the SoC design paradigm presents a new spectrum of pre-silicon

and post-silicon validation challenges. This includes checking of the commu-

nication fabric between IPs, communication protocols among the hundreds of

Intellectual Property (IP) blocks, concurrency related violations (like dead-

1As a thought experiment, if the Samsung Note line of devices had been discarded due
to a bug trend in post-silicon, how would that have affected the popularity of the Android
devices?
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Figure 1.1: High-level categorization of different components of SoC design
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Verification

planning

Architecture 

verification

Functional 

verification

Emulation-based

verification

Post-silicon

validation

Pre-silicon

verification

Post-silicon

validation

Figure 1.2: SoC validation life cycle [2].

locks), and application-level relevance of components.

An SoC (c.f., Figure 1.3) consists of billions of transistors (e.g., Qual-

comm SnapDragon 855 contains more than 6.9 billion transistors [3], Sam-

sung Exynos 9820 contains more than 7 billion transistors [4]) and more than

a hundred of pre-verified hardware functional blocks called IPs (e.g., Qual-

comm SnapDragon 855 contains more than 150 IP blocks [3]) to realize tens

of different functionality. Concurrent execution of different IP blocks creates

a massive design state space consisting of the order of 1080 states which is im-

possible to explore exhaustively as required for verification. Due to the sheer

size of the state space, integration of multiple types of design functionality,

and rapid shrinking of time-to-market (less than one year), SoC validation is

an extremely difficult and challenging task.

In spite of decades-long maturity of the hardware verification research and
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Figure 1.3: An SoC integrates hundreds of IPs on a chip that includes one or
more processor cores, digital signal processors (DSPs), multiple co-processors
and accelerators, I/O controllers, analog-to-digital (ADC) and digital-to-
analog (DAC) converters that are connected via a communication fabric [1].

associated electronic design automation (EDA) tools, scaling verification to

the needs of modern SoCs is still a formidable challenge [2]. We discuss a few

key challenges of contemporary SoC validation. While some of the challenges

are driven by complexity e.g., tool scalability, other are driven by the needs

of the rapidly changing design paradigm and the underlying technology.

Shrinking verification time: The disproportionate growth in number (of

the order of a billion devices) of connected devices has resulted in a massive

shrinkage in the system development life cycle, leaving low to no room for

customized verification efforts.

Limited tool scalability: Scalability remains a crucial problem in effective

application of verification technology, especially for formal verification tech-

niques such as SAT checking and SAT modulo theories [5]. Simulation-based

verification cost is also increasing due to explosive growth in the design state

space of modern SoCs. Random simulation covers a tiny fraction of design

state space whereas developing coverage-specific directed test is prohibitively

costly.

Power management challenges: Power efficiency and low-power require-

ments for integrated circuits have been the main focus of modern SoC de-

signs. Several well-researched technologies, e.g., clock gating, power gating

have been developed to address this problem. Addition of these features

significantly convolutes verification activities. Tens of power domains and

hundreds of power modes create a colossal verification challenge (of ensur-

ing that design is functional for all possible power modes) for both formal
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verification and simulation-based verification.

Security and functional safety: Security and privacy have become critical

requirements for electronic devices in the modern era. Unfortunately poor

specification and understanding leave many security holes. Often, one sorts

to hackathons or directed targeted hacking of the device to identify security

threats.

Hardware/software co-verification: In the era of microprocessors and

application software, it was easy to sperate concerns between hardware and

software verification activities. Recently, with increasing trend of defining

critical functionality in software, it is difficult, often impossible to define a

coherent specification of the hardware without the associated firmware or

software running. Before SoC era, hardware and software were traditionally

developed independently. In contrast, the strong coupling between software

and hardware makes it inevitable that we develop and validate them concur-

rently. This requirement essentially makes contemporary SoC validation a

hardware/software co-verification problem.

Over the last few years several industrial studies by Foster [6, 7] identify

following critical broad trends in SoC verification.

1. SoC verification represents bulk of the effort in the SoC design cycle,

incurring a cost of up to 80% (on average about 57%) of the total project

time.

2. On an average two silicon spins are needed before an SoC is productized.

Note that for a hardware/software vertically integrated system such as

modern SoC, this entails to one spin for catching hardware problems

and another spin catching hardware/software interaction issues. This

underlines the critical role of pre-silicon verification to ensure that here

is not critical gating issues during post-silicon validation.

This dissertation makes contributions to both pre-silicon verifi-

cation and post-silicon validation of SoCs, with highly impactful

contributions to post-silicon SoC validation.
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1.2 Phases of SoC validation

We now describe the two phases of SoC validation.2

1.2.1 Pre-silicon SoC verification

Pre-silicon SoC verification is performed on behavioral models written in

hardware description languages (HDLs) e.g., Verilog [8], VHDL [9], Sys-

temVerilog [10]. The primary objective of the pre-silicon verification is logic

and functional verification, timing verification, etc. The principal advantage

of pre-silicon verification is that it is a white-box validation method where

the validator has complete observability and controllability of the internal

design signals. Hence, during design simulation, any internal design signals

can be monitored as needed for verification. On the other hand, simulation is

extremely slow, often of the order of a few hundred cycles per second. In addi-

tion, heterogeneity and concurrent execution of multiple different IPs prevent

the execution of real-world use cases on top of a behavioral model e.g., boot-

ing an operating system using a register transfer level (RTL) model will take

approximately two to three years of CPU time. This causes many hard to

detect deep state space bugs to escape pre-silicon verification [1, 11, 12, 13].

1.2.2 Post-silicon SoC validation

Post-silicon SoC validation refers to the validation that is done after the

first silicon is available. Post-silicon allows execution at the target clock

speed making it approximately a billion times (109×) faster than the pre-

silicon simulation. Hence, real-world use cases e.g., booting an operating

system, can be executed which allows deep design state space exploration.

Consequently, the primary objective of the post-silicon validation is to detect

and diagnose hard to detect deep state space bugs such that those bugs do

not escape to the final product. Post-silicon validation acts as the final

gateway before mass production for a system is committed. Furthermore,

due to the physical nature of the validation vehicle (i.e., actual silicon rather

2In this dissertation, we call both pre-silicon verification and pot-silicon validation as
validation.
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than a computer model), it becomes possible to validate the artifact for non-

functional characteristics such power consumption, temperature tolerance,

and electrical noise margin. On the other hand, it is considerably more

complex to control and/or observe the execution of silicon than that of an

RTL simulator. In RTL simulator, virtually any internal design signal is

observable. In silicon one can only observe a few hundred among millions.

Additionally, in pre-silicon platform, changing observability or controllability

to facilitate more control would require a compilation (which can take hours

but a feasible option) whereas for silicon, it requires a silicon respin, which

is often infeasible.

1.3 Challenges in post-silicon and pre-silicon validation

Validation is the most resource and time intensive phase in the life cycle of

modern software, hardware or embedded systems, requiring 70% of the time

and teams that are three times the size of design teams [6, 7, 11, 12, 13]. We

touch upon some of the challenges in SoC validation.

1.3.1 Challenges in post-silicon validation

Post-silicon validation is often termed as a black art in industry. This is due

to i) the inherently difficult, “black box” verification it entails, ii) the lack

of on-chip observability and controllability due to a perennial economy in

area, iii) lack of principled methods to plan, utilize, and channelize available

resources, iv) inadequate a priori planning and top-down vertical communi-

cation across higher and lower levels of design. This is over and above the

fundamental malaise of all verification/validation problems, a battle of scale

against massive, complex next-generation SoC designs. Some challenges are

specific to an industrial environment, while others are more common across

the board.

In post-silicon validation, limited observability and controllability are key

obstacles that seriously hinders observation of various internal design signals

during post-silicon execution. Hence, to observe the internal design signals

during post-silicon execution, important internal design signals need to be

6
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funneled at an observation point e.g., debug pins (c.f., Figure 1.4). Conse-

quently, the important design signals need to be instrumented before the first

silicon is available as any change post first silicon would need a costly respin,

which is often infeasible.

The above necessity to observe and instrument internal design signals begs

the question of what part of the chip should be observed? as shown in Fig-

ure 1.5. In industry, this problem is commonly known as hardware tracing.

Due to extremely limited availability of on-chip storage (typically less than

10% of the total die area), and limited availability of external debug pins

(typically of the order of 100 pins), only a few hundred among millions of

internal giga-hertz signals can be traced. Selection of a few hundred signals

among millions makes hardware tracing a colossal optimization problem.

Once a post-silicon execution fails (e.g., hangs, crash) and a bug is detected

(c.f., Figure 1.5), the validator needs to investigate the traced signal values

to diagnose the potential root causes of the failure. This begs the question

what went wrong in the execution? as shown in Figure 1.5. This problem is

called post-silicon debug and diagnosis.

Diagnosing an SoC post-silicon failure is extremely difficult due to the

following reasons. i) Multiple instances of communication protocols execute

concurrently [14, 15, 16] among different IPs which results in a mammoth

interleaved design state space.3 Investigating such mammoth design state

space manually is practically impossible. ii) Post-silicon execution traces

3As a thought experiment, if two instances of each of the three different protocols
each of which has four states execute concurrently, it will result in a design state space
consisting of 46 = 4096 states.
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Figure 1.6: Traditional microprocessor validation paradigm where hardware
and softwares are designed, developed, and verified independently.

usually span over millions of clock cycles and consists of hundreds of protocol

messages interleaved. These make temporal and spatial localization of post-

silicon failures manually a tedious and error-prone task. iii) Unlike pre-silicon

diagnosis, the traditional notion of error sequentiality [1] does not hold good

for post-silicon diagnosis, i.e., one cannot use a detect → diagnose → fix

cycle per post-silicon bug as it would require costly respin which is often

infeasible.

In current industrial practice [11, 17], post-silicon debugging is unsystem-

atic, ad hoc, and heavily relies on the acumen and expertise of the designer

and the creativity of the validator. Diagnosing a post-silicon failure (e.g.,

deadlock, hangs, crash) can take validation engineers a few weeks to two

months, which often increases the time-to-market of the SoC.

1.3.2 Unique challenges in post-silicon validation of SoCs

Post-silicon validation has been well studied and researched for microproces-

sors [18, 19, 20, 21, 22]. The microprocessor is one among many hundreds of

different IP components that make an SoC. The traditional processor valida-

tion paradigms (c.f., Figure 1.6) are inadequate to address the new spectrum

of validation challenges that SoCs bring. In our “app” (application) driven
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societies where the principal role of the ubiquitous mobile device is to run

diverse applications, the verification/validation problem is compounded [1].

Lines blur between hardware and software, as most functions can be imple-

mented in both. Most applications use a particular combination of hardware,

software and peripherals. This obscures the traditional notion of functional

validation of software, hardware and peripherals as distinct entities. The ver-

tical integration (c.f., Figure 1.7) of components on the basis of applications

also presents a challenge for controlling and observing components in silicon,

since the importance of a component may not be uniform across applications.

1.3.3 Challenges in pre-silicon verification

Pre-silicon verification of SoCs comprises a wide spectrum of activities e.g.,

formal verification [23, 24, 25, 26, 27], simulation-based verification [28, 29,

30, 31], emulation-based verification [32, 33, 34], test generation [35, 36, 37,

38], transaction-level verification [39, 40], assertion-based verification [6, 29,

41, 42, 43, 44] among others.

The principle issue in most of these activities is the inherently complex

nature of verification – the lack of computational capacity to search through

and check the entire state space of a modern system. This issue of scalability

manifests as a hindrance to most activities in verification.

Along with scalability, an important issue in verification is the necessity to

9



express specifications/properties/assertions about the system that need to be

checked during the design and implementation of that system. Assertions are

artifacts used to validate hardware designs throughout their life cycle. They

are applied in formal verification, dynamic validation, runtime monitoring

and coverage analysis. Assertion-based verification heavily depends on the

quality of the assertions used.

To write good assertions, a verification engineer needs creativity and deep

understanding of a design’s functionality. Traditionally, writing good asser-

tions has been known to be a very hard problem [45, 46, 47, 48, 49, 50].

Recent industrial studies [6, 7, 51] report that even after decades of research

on assertion-based verification, writing good assertions is very challenging.

Consequently, in an industrial setup, it requires manual inspection to iden-

tify high-functional coverage assertions that are useful for regression analysis,

bug detection, and localization, etc.

1.4 Contributions of this dissertation to post-silicon

validation

1.4.1 Value added to SoC validation

In our solutions, we have managed to scale current post-silicon observability

technologies like hardware tracing to more than 300× the size of what has

been presented in academic literature so far. We have scaled hardware trac-

ing from small ISCAS89 benchmarks to the OpenSPARC T2 SoC (c.f., Fig-

ure 1.8), an industry scale SoC.

In post-silicon debug and diagnosis, where manual debugging is the norm,

we present a completely automated, efficient solution. We could isolate 66%

more bugs and take up to 847× less time than manual debugging for the

OpenSPARC T2.

We outline some insights that have emerged from our work, that can be

used as principles and resources for next-generation post-silicon validation

solutions.

1. Functional context awareness: The focus of our solution is on pro-

viding a methodology that minimizes the effort of debugging and is

10
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Figure 1.8: State-of-the-art solutions for hardware tracing select signals at
the gate-level netlist. Our solution uses abstraction as the key idea to scale
hardware tracing. We apply hardware tracing at the behavioral level and at
the application level to scale hardware tracing to OpenSPARC T2 SoC which
is 333× bigger than the designs on which state-of-the-art solutions work.

ISCAS89 USB, PCI OpenSPARC T2

State-of-the art Chapter 3 Chapter 4

Figure 1.9: Scaling hardware tracing from ISCAS89 benchmarks to
OpenSPARC T2 SoC via abstraction.
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aware of the high level functional context. As such, we introduce a

top-down methodology, where we model and analyze user scenarios or

applications, and cut across abstraction levels to identify relevant ob-

servation artifacts.

2. Scalability: In addition to functional context, we make scalability an

objective of our post-silicon debug solution. In doing so we depart

from the prior art and “zoom out” to behavioral level (RTL) and the

application level. Operating at the higher level of abstraction allows

to scale the observability selection to industrial scale SoC that is many

orders of magnitude bigger than the design on which state-of-the-art

solutions work. We also demonstrate that this scale is beyond the

capacity of current tracing approaches.

3. Vertically integrated solutions: An integrated picture of the fail-

ure in the presence of a detected bug is most valuable to debugging.

Most traditional methods have focused on in-depth analysis at one layer

(usually netlist or RTL), tending to over optimize for observability only

at that level. This lacks big picture context, and is ineffective for de-

bugging. The relevant components of observation that can present

an integrated picture are not necessarily available from one layer, but

need to be culled across different layers of abstraction. We present a

post-silicon validation methodology that cuts across various layers of

abstraction. Towards this, we model and analyze interacting compo-

nents at the application, RTL and netlist levels. We believe that this

cross-cutting approach aids the scalability in our solutions. In future

research, the abstraction, if raised to firmware and software levels, can

be made to scale further and be more robust.

4. Feature engineering for learning buggy behavior: One of our

innovations is in the atypical use of machine learning in the automated

diagnosis and debug solution. We define our diagnosis task as identify-

ing buggy traces as “outliers” and bug-free traces as “normal” behavior,

for which we seek to use unsupervised learning algorithms for outlier

detection. Typical use of machine learning for outlier detection would

involve the direct application of classification or clustering algorithms

over trace data using the signals as raw features. Instead, we use the

12



approach of feature engineering, or the transformation of raw features

into more sophisticated features by using domain specific operations.

The engineered features are highly relevant to the diagnosis task, re-

sulting in the classifiers identifying buggy traces accurately as outliers.

They are also generic, i.e. they are transformations that can be applied

to any hardware design. Our unsupervised approach is free of the labor

associated with training. It is also able to detect bugs that could not

be manually identified faster by orders of magnitude, as compared to

manual debug. With more research that identifies more distinguishing

features, the diagnosis can improve further in precision and be widely

applied to system designs.

5. Benchmark creation: In our research and industrial collaborations,

we have found that there is a widening gap between the state-of-the-

art in academic research in post-silicon validation and the state-of-

the-practice in industry [1, 12, 13]. This gap is probably due to the

extensive and elaborate infrastructure that is required for post-silicon

validation in industry. We believe that the innovative solutions from

research community can have higher impact and adoption if an exper-

imental testbed of industrial scale is used. Toward this goal, we have

released our current post-silicon observability framework [52, 53, 54]

for OpenSPARC T2 SoC which includes signal selection framework,

synthesized netlist of different T2 design modules, constrained random

testbenches, and signal-to-message conversion framework. We believe

that this framework will help the academic post-silicon validation re-

search to move beyond ISCAS89 benchmarks and will motivate and

inspire academic researchers to propose scalable and efficient solutions

of industrial relevance for post-silicon validation.

6. Comprehensive evaluation and ranking for assertions: A con-

tribution that is of high value to pre-silicon verification is providing

a methodology for comprehensively evaluating and ranking assertions.

A big deterrent in the effective use of assertions by non-experts and

designers in contemporary industry is in the lack of a figure of merit

that captures the notion “how good is/are my assertion(s)?” We have

developed a figure of merit for assertions in RTL designs that captures

the importance of an assertion within a design and the extent of cover-
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age achieved by the assertion. Such a comprehensive figure of merit is

the first of its kind, resulting in an evaluation/ranking that is very close

to human assessment. It is also computationally efficient and scalable

to large designs.

We outline the specific technical problems addressed by this dissertation,

as well as the impact of our solutions for each problem.

• Hardware tracing at different abstractions

Given the severity of the impact of missing necessary observability, there

has been significant research in the “signal selection problem”, i.e., disci-

plined identification of traceable signals that can maximize the design visi-

bility as necessary for post-silicon debugging, under observability restrictions.

Academic techniques for hardware tracing [55, 56, 57, 58, 59, 60, 61, 62]

work at the gate-level netlist (c.f., state-of-the-art in Figure 1.8 and Fig-

ure 1.9), treat all signals equally, and use an irrelevant metric to select

profitable signals for tracing. Consequently, they i) suffer from scalability

issues and ii) select low-quality signals irrelevant for debugging. While there

are significant differences in the specific approaches proposed, virtually all

related work optimizes the same metric, called the State Restoration Ratio

(SRR)4 which takes a myopic view of the design and tends to lose critical

information about functional relevance of the signals. In spite of its wide use

as a de facto standard in signal selection research, SRR is a poor metric [63]

for determining the quality of post-silicon trace signals. This casts serious

doubts on the practical applicability of all related signal selection algorithms

that are based on optimizing SRR.

We present the first hardware tracing solution (Chapter 3) that is applica-

ble across different abstraction levels of the design. We repurposed Google’s

PageRank [64] algorithm for signal selection and exploit design structure and

connectedness to guide signal selection. Our solution works at the netlist and

at the behavioral level of hardware designs and scaled hardware tracing from

designs containing approximately 3,000 flip-flops to designs containing more

than 10,000 flip-flops. Our hardware tracing solution is highly scalable and

computationally efficient which finished signal selection for designs contain-

ing up to 14,000 flip-flops and 76,000 logic elements with a runtime of only

4SRR measures the number of design states reconstructed from the signals observed:
a set S of signals is considered superior to another set S′ if more design states can be
inferred from observing S than S′.
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13 seconds and peak memory usage of 1.5GB. Further, the hardware tracing

solution selected high-quality trace signals which achieved up to 50.94% more

behavioral coverage and up to 7.3× more state restorability as compared to

the signals selected by the state-of-the-art methods.

• Application-level hardware tracing

An expensive component of post-silicon SoC validation is application level

use-case validation (c.f., Figure 1.8). In this activity, a validator exercises

various target usage scenarios of the system (e.g., for a smartphone, playing

videos or surfing the Web, while receiving a phone call) and monitors for

failures (e.g., hangs, crashes, deadlocks, overflows, etc.). Use-case validation

forms a key part of compatibility validation [1] and often takes weeks to

months of validation time. Consequently, it is crucial to determine techniques

to streamline this activity.

Each usage scenario involves interleaved execution of several protocols

among IPs in the SoC design, e.g., a usage scenario that entails receiving

a phone call in a smartphone when the phone is asleep may constitute pro-

tocols among the antenna, power management unit, CPU, etc. To debug

such a scenario, the validator typically needs to observe and comprehend the

messages being sent by the constituent IPs. An effective way to do that is

to use hardware tracing.

In response to current technology trends, application-level analysis dom-

inates many research areas in hardware like specialized architectures, al-

ternate computation models, etc. For verification/validation, application

relevance could serve to ease the increasingly daunting challenges of scale.

The primary reason for this is that the modern applications are very closely

integrated with hardware, software, and peripherals. Without sacrificing ver-

ification of any part of the hardware, we argue for the modeling and analysis

at the application level, and a top-down approach to post-silicon validation

as opposed to a bottom-up approach as seen in the literature so far. Given

that post-silicon validation tends to be a maze, we are arguing for navigating

the maze with a divide-and-conquer approach, using the application space

as a starting point.

We present the first hardware tracing solution (Chapter 4) that specifically

targets use-case validation. We exploit available architectural collateral such

as messages, transaction flows etc., to develop a targeted message selection
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for hardware tracing. To make scalability an objective of the post-silicon de-

bug solution, we operate at a higher-level of abstraction (application-level)

that allows to scale hardware tracing to industrial-scale SoC containing mul-

tiple heterogeneous IPs that is bigger by a factor of 333× as compared to the

state-of-the-art published designs. Our traced signals are of high-quality that

achieved up to 99% flow specification coverage, pruned up to 89% of can-

didate root causes in post-silicon failures, focused debugging to only 55% of

participating IP-pairs, and localized failures to no more than 0.31% of paths.

• Automated debugging of post-silicon failures

The SoC post-silicon debug and diagnosis problem is convoluted by the

heterogeneity of the constituent IPs and the vertical integration of hard-

ware/software/firmware components. Due to the concurrent execution of

multiple flows in the different usage scenarios, extremely long execution traces

(potentially spanning over millions of clock cycles), lack of bug reproducibil-

ity (due to on-chip asynchronous events, electrical effects), and lack of error

sequentiality lead to an extremely time consuming, if not unachievable, post-

silicon debug and diagnosis effort.

In current industrial practice [11, 12, 13], post-silicon debug and diagnosis

is a manual, unsystematic, ad hoc process that primarily relies on the cre-

ativity of the validator. Beginning with first silicon, SoCs are executed at the

target clock speed using various applications and a set of IP interface signals

are traced. When execution fails with a hang, crash etc., manual debugging

begins. During post-silicon debugging, the focus is on hard to detect deep

state space functional bugs that escapes pre-silicon verification.

We present a scalable and efficient post-silicon bug diagnosis solution (Chap-

ter 5) using machine learning and feature engineering. Our bug diagnosis

solution can automatically diagnose a post-silicon failure by analyzing intrin-

sic characteristics of input data without requiring a prior design knowledge.

We use feature engineering to transform input data in the machine learn-

ing space such that normal behaviors are close to each other and densely

distributed whereas buggy behaviors are distant from normal behaviors and

sparsely distributed. Our diagnosis solution diagnosed 66.7% more bugs and

took up to 847× less diagnosis time as compared to the manual debugging

to debug subtle and complex bugs on OpenSPARC T2 SoC. The diagnosing

solution is highly effective that achieved a diagnosis precision of up to 0.769
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with only up to 63 seconds of runtime and 508 MB of peak memory usage.

1.5 Contributions of this dissertation to pre-silicon

verification

• Assertion ranking

Assertions are used in a wide spectrum of hardware design validation tasks,

e.g., formal verification, dynamic simulation-based verification, runtime mon-

itoring, and emulation-based verification [6, 44, 45]. Identifying “good” as-

sertions is the key to ensure high-quality assertion-based verification. A

validation engineer needs a deep understanding of the design functionality

to write good assertions. Even after decades of research on assertion-based

verification, writing good assertions remains a formidable challenge both in

academia [45, 46, 47, 48, 49, 50] and in the industry [6, 7, 51]. Consequently,

in the current industrial setup, tedious and error-prone manual inspection is

used to identify high-functional coverage assertions for regression analysis,

bug detection, and diagnosis.

GoldMine [41, 43, 65] and other tools [42] automatically generate succinct

assertions but do not provide a quantitative metric to evaluate the goodness

of the assertions in terms of an assertion’s design functionality coverage.

Further, automatic methods [41, 42, 43, 65, 66, 67] often generate more as-

sertions than can practically be examined by a human. Ranking of the most

important assertions is essential if this technology is to be practicable.

The use cases of an assertion-ranking approach comprise situations where

assertions are used and need to be examined by a human in the loop, e.g.,

assertion ranking can be used to save and prioritize debugging efforts both

in simulation-based and formal verification, to prevent a formal verifier from

running into capacity constraints by including top-ranked assertions with

high-behavioral coverage, identifying a few high-behavioral coverage asser-

tions for simulation and emulation. In general, an assertion ranking tech-

nique can inform designers of any missing design behaviors and the quality

of the assertions that they have written.

We present the first solution (Chapter 6) for assertion ranking using sys-

tematic RTL source code analysis. We model dependencies among design

variables as a directed graph called a variable dependency graph. We define
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assertion importance and assertion complexity metrics and use the depen-

dency graph to algorithmically compute those two metrics. Our assertion

ranking solution can identify presence of important design variables both in

combinational and temporal assertions. The ranking solution ranks asser-

tions higher that contain such important variables and cover critical design

functionality paths. Prioritizing presence of important design variables helps

our assertion ranking solution to rank assertions with good bug detectability

at the top of the ranked list. Our analysis shows that top-ranked assertions

from our assertion ranking solution can detect up to 1.5× more bugs per

assertion as compared to a baseline algorithm [29].

• Functional debug of hardware designs

With increasing complexity and versatility, verification, in particular debug

and diagnosis have become the biggest bottleneck in the hardware design

cycle. Debugging even a single bug can take several weeks to months [6, 7, 51].

During simulation of massive industrial-scale designs (with thousands of lines

of RTL source code), a tremendous amount of simulation data (often in

the order of several GBs) is generated. Hence localizing the root cause is

tantamount to finding a needle in the haystack. Consequently, localization

of the bug to any extent is valuable and can significantly slash debugging

costs and efforts. Although state-of-the-art academic research [68, 69, 70,

71, 72, 73, 74, 75] and industrial debugging tools [76] aid “what-if” scenarios

with visualizations, they fail to provide any localization of the root cause.

We present the first solution (Chapter 7) for assertion-based bug localiza-

tion for RTL functional debugging. Our solution leverages the massive vol-

umes of simulation trace data that is generated in typical verification environ-

ments to mine accurate symptoms of buggy behavior. Our solution identifies

statistically relevant common symptoms across failing simulation traces and

mapping these symptoms back to the corresponding design execution paths in

the RTL source code. Our solution achieved precise localization to less than

5% of RTL source code and localized to simulation traces smaller by 80% as

compared to the original failure trace. Our solution localized to small, fo-

cused, and functionally coherent high-importance code zones with importance

of up to 0.857.
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1.6 Dissertation outline

The remainder of this dissertation is organized as follows. Figure 1.10 shows

a flowchart of the different key problems of SoC validation addressed in this

dissertation.

In Chapter 2, we present the previous works that are closely related to the

contributions of this dissertation.

In Chapter 3, we present a scalable and computationally efficient post-

silicon trace signal selection technique [63, 77] that can be applied both at

the netlist-level and the at behavioral-level (c.f., Figure 1.8) RTL.

In Chapter 4, we present a method for selecting trace messages at the appli-

cation level (c.f., Figure 1.8) for diverse post-silicon use-case validation [78].

In Chapter 5, we present a scalable and computationally efficient method

for diagnosing candidate root causes for post-silicon failures [79].

In Chapter 6, we present a systematic and efficient ranking method to

quantify the goodness of an assertion [80, 81] using RTL source code analysis.

In Chapter 7, we present an automatic and scalable assertion-based sta-

tistical bug localization technique for pre-silicon debugging [82].

In Chapter 8, we summarize the work and conclude this dissertation.

In Chapter 9, we detail the tools that are developed as a part of this

dissertation.
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CHAPTER 2

RELATIONSHIP TO EXISTING WORK

In this chapter, we outline different activities and the goal of post-silicon

validation followed by a detail survey of existing state-of-the-art techniques

for both post-silicon validation and pre-silicon verification of SoCs. Then we

study the principles of GoldMine that we will use for our pre-silicon solutions.

2.1 Post-silicon validation primer

2.1.1 Post-silicon validation activities

Post-silicon validation encompasses a diverse set of activities that include

validation of both functional and timing behavior as well as non-functional

requirements [1].

1. Power-on-debug is one of the first activities performed when a pre-

production silicon arrives at the post-silicon validation lab. It includes

a significant brainstorming component to come up with a bare-bone

system configuration (by removing most of the complex features, e.g.,

power management, security) such that the first silicon reliably powers

on with the help of a custom debug board. A stable power-on can take

a few days to a week. Once the power-on process is stabilized, a number

of more complex validation and debug activities can be performed.

2. Basic hardware logic validation follows power-on and ensures that the

hardware design works correctly and exercises specific features of con-

stituent IPs in the SoC design. This is typically done by subjecting the

silicon to a suite of random and constrained-random special purpose

tests.
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3. Compatibility validation refers to the activities to ensure that the first

silicon works with various versions of the system, application software,

and peripherals. This validation accounts for various target use cases

of the systems, the platforms in which the SoC is to be included, etc.

Compatibility validation also includes validation of system with add-

on hardwares, various operating systems and applications including

games, and various network protocols and communication infrastruc-

tures. A key challenge in compatibility validation is the large number

of potential combinations (of configurations of hardware, software, pe-

ripheral, and use cases) that need to be tested; typically it includes

over a dozen operating systems, more than a hundred peripherals, and

over 500 applications.

4. Electrical validation exercises electrical characteristics of the system to

ensure adequate electrical margin under worst-case operating condi-

tions. The electrical characteristics include input–output, power deliv-

ery, clock, etc. The validation is done with respect to various specifi-

cation and platform requirements. As with compatibility validation, a

key challenge here is the size of the parameter space:1 for system qual-

ity and reliability targets, the validation must cover the entire spectrum

of operating conditions for millions of parts.

5. Speed-path validation identifies frequency-limiting design paths in the

first silicon due to the variation in the switching performance of the dif-

ferent transistors. Since circuit speed is constrained by the slowest path

in the design, identifying such slow paths is of paramount importance

to optimize design performance.

2.1.2 Post-silicon validation goals

The primary goal of post-silicon validation is to identify errors by exploiting

post-silicon as a giga-hertz order simulator. The goal is not to completely di-

agnose or root-cause a bug, rather to narrow down from a post-silicon failure

to an error scenario that can be effectively and efficiently investigated in the

pre-silicon environment. Since silicon is involved in the validation process,

1Note, here the parameters are real valued variables e.g., voltage, current, resistance.
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the path from an observed failure (e.g., system crash) to a resolution of the

root cause for the failure is not straightforward. It includes following four

steps [1] – i) test execution, ii) pre-sighting analysis, iii) sighting disposition,

and iv) bug resolution.

1. Test execution involves setting up the test environment and platform,

running the test, and performing sanity checks if a test fails. If the

problem fails to resolve, then it is typically referred to as a pre-sighting.

2. Pre-sighting analysis aims to make the failure repeatable. This is a

highly non-trivial task as most post-silicon failures occur under highly

subtle coordinated execution of different IP blocks. Once a stable recipe

for failure is discovered, the failure is referred to as sighting.

3. Sighting disposition involves developing a plan to track, address, and

create turnarounds for the failure and calls for collaboration among

architects, designers, and validators.

4. Bug resolution includes both finding a workaround for the failure to

enable exploration of other potential bugs, and triaging and identifying

root causes for the bug. Triaging and root-cause diagnosis of bugs are

the two most complex challenges in post-silicon validation. Identifying

the bug as a logic error, recreating the error in pre-silicon platform,2

different observable failures for different tests for the same bug, and

aggressive validation schedule make bug resolution a highly non-trivial

exercise.

2.2 Established techniques for post-silicon SoC

validation

2.2.1 Post-silicon observability enhancement

To facilitate post-silicon debugging and validation, modern SoC designs in-

clude a significant amount of on-chip instrumentation hardware, called design-

2The exact post-silicon scenario cannot be exercised in pre-silicon platform; one second
of silicon execution would take several days to weeks on pre-silicon simulators. A scenario
needs to be created that exhibits the same behavior as the original post-silicon failure but
involves execution small enough to be replayable in pre-silicon platforms.
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for-debug (DfD) [1]. In some cases, the DfD estimates to 20% or more silicon

real estate. Two critical DfDs are i) scan chain [83] and ii) trace buffer [12]. In

addition to these two architectures, there are also instrumentation to trans-

port internal register values off-chip, quickly access large memory arrays, etc.

These architectures can get highly complex. For example, in modern SoC

designs, data transport mechanisms may repurpose some of the communi-

cation mechanisms already present in the system e.g., universal serial bus

(USB) port.

Scan-chain based observability enhancement: In [84, 85] the authors

have proposed a technique to combine scan chains and trace buffers for en-

hanced in-field real-time debug data acquisition to maximize the observability

of internal circuit states. In [86, 87], the authors propose a fine-grained ar-

chitecture that uses various scan chains with different dumping periods. The

authors also propose an efficient algorithm to select beneficial signals based

on this architecture. In [88], the authors propose an efficient algorithm to

select a profitable combination of trace and scan signals to maximize the

overall signal restoration performance.

The primary drawback of scan chain-based observability enhancement meth-

ods is that the design execution needs to be stopped to offload the data from

scan chains. This has two primary consequences – i) design execution data

cannot be acquired in real-time and ii) halting design execution may prevent

manifestation of subtle logic bugs that need continuous execution for thou-

sands of clock cycles. Consequently, continuous data acquisition methods

such as trace buffer-based techniques are favored for post-silicon validation.

Trace-buffer based observability enhancement: There are two distinct

paradigms of trace buffer-based signal selection techniques – i) dynamic signal

selection and ii) static signal selection.

In [89] the authors propose an enhanced algorithm for dynamic trace signal

selection that can calculate state restorability values accurately by consider-

ing both local and global connections of the gate-level states. Also the pro-

posed algorithms select trace signals dynamically to always guarantee high

restoration ratio regardless of the input test patterns. Basu et al. [90] propose

an efficient signal selection algorithm and associated trace controller design

that would enable verification engineers to dynamically trace different set of

signals for improved error detection. The authors propose a region-aware sig-
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nal selection algorithm that selects useful signals during design time (using

static analysis) based on the knowledge of functional regions and associated

error zones and develop a low-overhead dynamic signal tracing hardware to

enable designers to trace different set of signals during execution based on

active (relevant) functional regions. In [91], the authors leverage pre-silicon

information to enhance post-silicon trace signal selection in modern proces-

sors. In addition to that, the authors have developed a novel architecture

for dynamic per-cycle selection of signals based on the present instruction.

In pre-silicon phase, first, a set of controlling signals and their corresponding

rules are extracted manually. Based on these rules, a set of data is extracted

using an automatic formal method, which determines which signals should

be traced at post-silicon. In [92, 93] the authors have proposed a trace sig-

nal selection technique based on error transmission, taking into account the

topology of the design. The proposed signal selection methodology can be

effectively applied to trace as well as a combination of trace and scan based

observability techniques.

Static trace signal selection techniques can broadly be classified into partial-

restorability based selection and complete-restorability-based selection. In [94],

the authors have proposed a method based on partial-restorability using

probabilistic analysis. They also enhance the technique of forward restora-

bility and backward restorability [95, 96] to restore many more missing gate-

level states.

Complete-restorability based signal selection techniques use a wide variety

of methodologies including simulation and machine learning to select post-

silicon trace signals. In [55], the authors have proposed a signal selection

technique based on complete-restorability using a structural analysis of the

gate-level netlist. This technique can guarantee better restoration compared

to partial restorability and can provide both higher gate-level signal restora-

tion ratio and significantly lower signal selection time. In [56], the authors

show that a more accurate metric for state restoration capability of a set

of signals can be obtained by actually simulating the restoration process on

the circuit over a small number of cycles, and measuring the corresponding

restoration ratio. They also propose a novel signal selection method guided

by this metric. Komari and Vemuri [97] modeled the trace signal selec-

tion problem as a bi-partitioning problem, the set of flip-flops being tapped

onto the trace buffer is one partition and remaining flip-flops form the other
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partition. They use a simulated annealing heuristic to select trace signals.

In [60], the authors combine structural analysis and simulation of gate-level

netlist to propose a hybrid analysis-based trace signal selection technique.

In [57, 58, 98], the authors propose an efficient signal selection technique

using machine learning and take advantage of simulation-based signal selec-

tion while significantly reducing the simulation overhead. The approach uses

bounded mock simulations to generate training vectors set for the machine

learning technique followed by an elimination approach to identify the most

profitable signals set. Later, the authors augmented this machine learning

technique with integer linear programming (ILP) and propose an ILP-based

algorithm for refining trace signal selection over multiple mock simulation

runs of the gate-level netlist. Assertion coverage-aware trace signal selection

was proposed in [61, 62]. In [99, 100, 101] the authors leverage information

from RTL to select trace signals from gate-level netlist and to design on-chip

debug hardware.

In our solution [63, 77, 78], we depart from prior art and apply hardware

tracing at a higher-level of abstraction. First we apply hardware tracing

for signal selection at the behavioral level (RTL) and then we raise the ab-

straction further and apply hardware tracing at the application level. Higher

abstraction allows hardware tracing in a specific functional context, increas-

ing signals’ relevance in design understanding and debugging.

2.2.2 Post-silicon debug and diagnosis

IFRA [102, 103, 104] is primarily aimed to localize electrical bugs in multi-

core processors in a system setup. IFRA consists of a special design and

analysis techniques required to bridge a major gap between system-level and

circuit-level debug. Special hardware recorders, called footprint recording

structures record semantic information about data and control flows of in-

structions passing through various design blocks of a processor. This in-

formation is recorded concurrently during normal operation of a processor

in a post-silicon system validation setup. Upon detection of a problem,

the recorded information is scanned out and analyzed for bug localization.

Special program analysis techniques, together with the binary of the ap-

plication executed during post-silicon validation, are used for the analysis.
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Although IFRA does not require full system-level reproduction of bugs or

system-level simulation but applying IFRA to a new processor microarchi-

tectures can be challenging due to the manual effort required to implement

special micro-architecture-dependent analysis techniques for bug localization.

BLoG [105] automates the manual effort that is required to implement special

micro-architecture-dependent analysis techniques of IFRA to a new processor

micro-architecture.

BackSpace and BackSpaceL [106, 107] introduce a new paradigm for post-

silicon debugging using formal analysis, augmented with some on-chip hard-

ware support. These methods allow the chip to run at full speed, yet provide

the ability to backspace hundreds, perhaps thousands, of cycles from a crash

state or a programmable breakpoint, to derive an error trace that led to

the crash, which can then be replayed in a simulator or waveform viewer to

help understand the bug. Although the on-chip overhead was reasonable in

BackSpaceL, Paula et al. leverage existing in-silicon debug logic e.g., trace

buffers, to propose TAB-BackSpace [108]. TAB-BackSpace has no additional

hardware cost. Virtually, TAB-BackSpace achieves the effect of extending the

trace buffer arbitrarily far back in time, i.e., an effectively unlimited length

trace buffer. In nuTAB-BackSpace [109], the authors exploit an observation

that BackSpaceL needs to repeatedly trigger the bug via the exact same ex-

ecution. In practice, non-determinism of post-silicon execution makes such

exact repetition extremely unlikely. Instead, what typically arises is an intu-

itively equivalent trace that triggers the same bug, but is not cycle-by-cycle

identical. In nuTAB-BackSpace, a user provides rewrite rules to specify

which traces should be considered equivalent, and nuTAB-BackSpace uses

these rules to make progress in trace computation even in the absence of

exact trace matches. The authors prove that under reasonable assumptions

about the rewrite rules, the abstract trace computed by nuTAB-BackSpace

is concretizable – i.e., it corresponds to a possible, real chip execution with

low possibility of error.

BiPED [110] leverages the vast body of design knowledge that is available

during pre-silicon verification to identify the exact time and location of post-

silicon bugs. BiPED learns the correct design behavior of a design’s com-

munication patterns during pre-silicon verification. In post-silicon validation,

this knowledge is used to detect errors by means of a reconfigurable hardware

unit. On detection of an error, bug reproduction is not necessary: a diag-
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nosis software algorithm analyzes information stored in the hardware unit

to provide a wide range of debugging information. Bug positioning system

(BPS) [111] proposes a novel technique for automatic diagnosis of difficult

electrical bugs during post-silicon validation. Lightweight BPS hardware logs

a compact encoding of observed signal activity over multiple executions of

the same test: some passing, some failing. Leveraging a novel post-analysis

algorithm, BPS uses the logged activity to diagnose the bug, identifying the

approximate manifestation time and critical design signals.

In [112, 113, 114, 115, 116], the authors present the Quick Error Detection

(QED) technique for systematically creating families of post-silicon validation

tests that quickly detect bugs inside processor cores and uncore components

e.g., cache controllers, memory controllers, and on-chip interconnection net-

works of multi-core SoCs. Such quick detection is essential because long

error detection latency, the time elapsed between the occurrence of an error

due to a bug and its manifestation as an observable failure, severely lim-

its the effectiveness of traditional post-silicon validation approaches. QED

can be implemented completely in software, without any hardware modifi-

cation. Hence, it is readily applicable to existing designs. QED shortens

error detection latencies and increases bug coverage. In Hybrid-QED (H-

QED), Campbell et al. [117] leverage high-level synthesis (HLS) techniques

to overcome post-silicon validation and debugging challenges for hardware

accelerators. In [118], the authors present E-QED, a new approach that

automatically localizes electrical bugs during post-silicon validation.

In contrast, our post-silicon debug and diagnosis solution [79] does not need

any additional hardware and plugs into the current industrial post-silicon

validation process with multiple orders of magnitude of benefits. Our solution

uses trace signals obtained during post-silicon execution and employs the

power of machine learning and feature engineering to automatically diagnose

the root-cause of a post-silicon failure.

2.2.3 Comparative discussion of our post-silicon debug
solution and QED

In contemporary SoCs, most of the system-level functionality are realized

by guiding hardware via a firmware and vertically integrated components
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Figure 2.1: (a) shows vertical integration of SoC components. (b) shows a
simplified secure boot flow [1, 2]. FM/FW: Functional module firmware.
SE/FW: Security engine firmware. HW: Hwardware. OCI: On-chip inter-
connect. SM: Secure memory. DMA: Direct memory access. 1: Request
authentication. 2: Fetch, lock, and authenticate. 3: Status query. 4: Status
reply. 5: Configure secure memory access. 6: Image info. 7: Data trans-
fer. 8: Transfer done. →: MMIO message. 99K : Polling messages. :
Interrupt messages.

(c.f., Figure 2.1a), e.g., boot image authentication, AES computation via

AES firmware core. Consequently, failures such as deadlocks, hangs, crashes,

blue screen of death etc. happen due to the bugs sensitized at the HW/SW

or HW/FW communication interface. For example, in Figure 2.1b, a bug in

any of the communication steps 1-9 would eventually cause a failure of boot

image authentication that will symptomatize as boot failure or blue screen of

death.

This example points to some key aspects of our post-silicon debug solution

and QED. Firstly, focusing on hardware alone (like QED) would not allow to

debug failures such as hangs, crashes etc. that occurs due to communications

of vertically integrated components (c.f., Figure 2.1a). This is because neither

hardware or firmware alone realizes the functionality nor it sensitizes the

bug. It is the HW/FW communication that sensitizes and symptomatizes

the bug. The application-level analysis (like our solution) models the different

communications among HW/SW, HW/FW interfaces making it a potential

candidate to target such failures. Secondly, the scope of QED is limited to

only logical/electrical bugs that may occur in the behavioral model or in the

fabricated silicon. On the other hand the scope of application-level analysis

is much broader encompassing communication bugs at HW/FW, HW/SW,

and SW/FW interfaces, concurrency bugs between HW/FW and between
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IP blocks, and logical bugs. Finally, since QED accepts a behavioral model

(such as a RTL of the design) for its computation, it cannot be applied to

diagnose and localize bugs at the communication interfaces of HW/SW or

HW/FW. This is primarily due to the fact that it is almost impossible to run

any firmware of a reasonable size and complexity on a RTL design due to its

extremely slow simulation speed (typically less than 100 cycles per second).

Scalability of a formal verification engine: Formal verification engine

is the primary backbone of the symbolic QED [119] to localize the culprit set

of hardware IPs. Symbolic QED uses a technique called partial instantiation

(similar to slicing) to address the scalability issues. Using partial instanti-

ation, QED creates a smaller set of connected hardware IPs that fits into a

formal verification engine. While this method works when considering only

hardware IPs, in the context of failures caused by communication between

vertically integrated components, it has the following limitations.

1. A software verification engine like CBMC [120] cannot be used since

the hardware functions are not captured by program semantics.

2. Formally verifying HW/FW components together using cycle-accurate

models does not scale for multiple heterogeneous IPs.

3. Although recent works [121] have addressed reasoning about HW/FW

concurrency, verification of concurrently executing HW/FW on mul-

tiple heterogeneous IPs is still an unaddressed problem. This is im-

portant in a heterogeneous environment where IPs potentially have

different micro-controllers, different communication handling, and syn-

chronization mechanisms.

4. Firmware often uses bit-wise operations, e.g., shifting, masking, to ac-

cess hardware architectural states stored in hardware registers. For-

mally checking such operations requires bit-precise reasoning, e.g., bit-

blasting. For multiple heterogeneous IPs such operations are highly

expensive and do not scale.

In contrast, since application-level modeling and analysis work at higher

abstraction and uses highly efficient and scalable machine learning tech-

niques, scalability issues such as mentioned above do not affect it.
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2.3 Established techniques for pre-silicon SoC

verification

2.3.1 Assertion ranking

Vasudevan et al. [41, 43, 65] present GoldMine, a scalable automatic as-

sertion generator for both sequential and combinational hardware designs

in RTL. GoldMine integrates two solution spaces, statistical, dynamic tech-

niques (data mining) and deterministic, static techniques (lightweight static

analysis and formal verification), to provide a solution to the assertion gen-

eration problem. In [39, 67], the authors raised the abstraction and applied

GoldMine to generate system-level assertions. Candidate assertions are gen-

erated in the form of frequent patterns from dynamic simulation trace data

for both cycle-accurate and transaction-level designs [40]. In [66], the au-

thors have proposed a word-level assertion generation method to have higher

expressiveness and readability than their corresponding bit-level assertions

using weakest-precondition computation [122]. In [123, 124], the authors

present a coverage-guided mining approach for mining assertions from sim-

ulation traces using a combination of association-rule mining, greedy set

covering, and formal verification. The authors use a coverage feedback to

prevent both exhaustive rule generation of association-rule mining and as-

sertions being over-constrained.

Recently, some efforts have been put to reduce the amount of required sim-

ulation trace data for high-quality assertion generation. In [42], the authors

propose an assertion generation technique using dynamic dependency graphs.

They extract relations between design signals and use significantly less num-

ber of simulation traces to generate more expressive properties. They do

not use any expression template to establish relations between signals. The

authors abstract from concrete use cases by inserting symbolic values by

merging similar conditions in time.

In our solution [80, 81], we provide a systematic and efficient assertion

ranking method to quantify the quality of an assertion (both automatically

generated and manually written) based on the assertion’s functional coverage

of the design.
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2.3.2 Pre-silicon debug and diagnosis

Debugging and bug localization have had a long history in software pro-

grams [125]. Machine learning and statistical techniques were applied in [126,

127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137] for debugging software

programs.

Veneris et al. [68, 69, 70] present an automated method for RTL fail-

ure triage. Failure triage is the task of analyzing large sets of failures fol-

lowed by grouping those failures together that are likely to be caused by the

same design error. The proposed framework instruments techniques from

the machine-learning domain combined with the root-cause analysis power

of modern SAT-based debugging tools in order to exploit information from

error traces and group the corresponding failures using clustering algorithms.

In [74, 138], the authors propose an automated failure triage framework for

RTL debugging that unifies three critical aspects of the problem: the ap-

proximation of the general location of root-cause(s) in the design under ver-

ification, the binning of all related failures generated by regression runs, and

the distribution of these binned failures to the proper engineer(s) for detailed

analysis. The proposed triage engine entails two novel methodologies – i) a

classification framework that mines information from SAT-based debugging

and simulation to probabilistically reason about the relation of root-causes

with their respective failing verification traces and ii) a formulation of failure

binning as exemplar-based clustering for grouping and distributing failing

traces to the proper engineering team(s).

For RTL debugging, a simulation-based technique was proposed in [139]

by capturing all possible faulty behaviors that can be generated from spe-

cific sets of design nodes. In [140], the authors propose a BDD-based mul-

tiple design error diagnosis and correction technique via implicit enumera-

tion of erroneous lines. A novel formulation of the debugging problem using

MaxSAT to improve performance and applicability of automated debuggers

was proposed in [141]. The technique identifies the errors in the design and

indicates when the bug is excited in the error trace. In [73, 75], the au-

thors propose a directed SAT-based debugging algorithm which prioritizes

examining design locations that are more likely to be suspects. This prioriti-

zation is learned from historical debug data to predict the suspect locations.

Berryhill et al. [142, 143, 144] propose a novel approach that considers only
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a portion of the RTL design locations but still finds the complete solution

set to the problem. The presented approach proceeds through a series of

iterations, each considering a strategically-chosen subset of the design loca-

tions (a suspect set) to determine if they are root causes. The results of

each iteration inform the choice of suspect set for the next iteration. Becker

et al. [71] propose FudgeFactor, a RTL debugging technique that provides

semantically-meaningful RTL source code corrections. This method starts

with a buggy design, at least one failing and several correct test vectors,

and a list of possible suspect bug locations. Using this list and a library

of rules empirically characterizing typical source code mistakes, the authors

instrument the buggy design to allow each potential error location to either

be left unchanged, or replaced with a set of possible corrections. FudgeFac-

tor then combines the instrumented design with the test vectors and solves

a 2QBF-SAT problem to find the minimum number of source-level changes

from the original code which correct the bug. In [72], the authors introduce a

performance-driven debugging methodology for pinpointing the root-cause of

memory-locked errors. The technique models only a sliding time window and

a final time window explicitly at any one time, while interstitial time-frames

are linked with a lightweight memory model. In [145], the authors propose

an iterative algorithm in which a high coverage rule is discovered using as-

sociation rule mining to differentiate state vectors in a failure cycle from the

passing cycle of a simulation run. This method does not localize to suspicious

code zones in the design. In symbolic QED method [146, 147, 148], the au-

thors employ bounded model checking, software transformations, including

redundant execution and control flow checking of the applied quick error de-

tection tests [112, 113]. Symbolic QED combines these error-detecting QED

transformations with bounded model checking-based formal analysis to gen-

erate minimal-length bug activation traces that detect and localize any logic

bugs in the pre-silicon RTL design.

In contrast, our RTL debugging solution [82] is based on identifying statis-

tically relevant common symptoms across failing simulation traces through

mining, and mapping these back to the corresponding execution paths in the

RTL source code. Our solution does not need historical debug data, possible

suspect bug locations, or a library of rules. Our localized code zones are

small, focused, functionally coherent, and executable.
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2.4 GoldMine for automatic assertion generation

GoldMine [41, 65] incorporates two diverse solution spaces, statistical, dy-

namic techniques (data mining and machine learning) and deterministic,

static techniques (lightweight static analysis and formal verification), to pro-

vide a scalable and automated solution to the assertion generation problem.

Static analysis of designs (including formal verification) can make excellent

generalization and capture domain/design specific information, but often suf-

fers from scalability and computational complexity issues. Data mining and

machine learning, on the other hand, are extremely computationally efficient,

but depend on domain knowledge guidance for deriving relevant knowledge

from a system. Together, these two technologies offset each other’s disadvan-

tages. The data mining when guided by the design information gathered via

static analysis of the design, gives rise to useful and succinct design knowl-

edge i.e., assertions.

GoldMine can generate both propositional and temporal assertions. The

generated assertions are of the form P: G(A→ C) or P: G(A⇒ C) where A

is the antecedent and C is the consequent of the assertion P . A is a conjunc-

tion of a propositions defined in terms of input and/or register variables and

C is proposition defined in terms of a given register and/or output variable.

Each proposition in A or in C is a signal-value pair. The variable in C is

called a target variable. GoldMine generates assertions of bounded length.

Hence, GoldMine cannot generate unbounded liveness properties. We use

linear temporal logic (LTL) [149] notation to express GoldMine assertions.

GoldMine generates assertions both at the module level [41] and at the sys-

tem level [67]. GoldMine can also generate assertions for bit-level target

variable [41] and word-level target variable [66].

Figure 2.2 shows the architecture of GoldMine which is composed of data

generator, static analyzer, assertion miner, formal verifier, and assertion

evaluator components.

2.4.1 Static analyzer

The static analyzer analyzes the design source code and extracts design-

specific information and passes it to the other GoldMine components such

as assertion miner, formal verifier etc. The static analyzer determines basic
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Figure 2.2: GoldMine architecture.

design information such as discerning the top module in the design hierarchy,

identifying clock and reset signals, and selecting a set of target variables.

Static analyzer also selects a set of feature variables per target variable

by using the bounded cone of influence. The bounded cone of influence uses

a design’s dependency graph to transitively compute the variables that can

affect the target variable within a bounded number of temporal frames.

2.4.2 Data generator

The data generator generates data for the assertion miner algorithms. For a

given RTL design, the data is obtained via dynamic simulation. The design

is simulated for a fixed number of cycles (10,000 cycles) using random input

stimuli. Regression and directed test, if available, can also be used to generate

the data.

The data generator parses entire simulation trace data and summarizes it

by retaining only those data that coincides with the clock edge. Next, the

data generator unrolls the data for the specified number of temporal frames

and discards any duplicate frames. The assertion miner heavily relies on this

data preprocessing to simply mining task.

2.4.3 Assertion miner

The assertion miner uses the design information from the static analyzer to

constrain mining on the signals that are in the bounded cone of influence of

a target variable. This limits the search space of the mining algorithm from

all possible design signals to the relevant signals in the design for a target

variable.
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The assertion miner of GoldMine uses various mining algorithms such as

decision-tree based miner and best-gain decision forest miner [41], coverage

closure-based miner and counterexample-guided miner [123, 124, 150], and

PRISM [151]. The data miner searches for causal relationships between fea-

ture variables and the target variable in the simulation data. If the data

miner finds a relationship with 100% confidence, it generates an assertion.

2.4.4 Formal verifier

It is often very difficult, if not impossible, to simulate every possible design

functionality. Therefore, the simulation trace data is incomplete and captures

only a subset of design functionality. Consequently, it cannot be guaranteed

that the generated assertions are true system invariants. Therefore, the for-

mal verifier uses Cadence Incisive Formal Verifier (IFV) [152] to verify the

generated assertions. The formal verifier reports assertions that pass formal

verification as true system invariants. If an assertion fails formal verification,

then the assertion miner can use the assertion’s counterexample to refine

it [150].
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CHAPTER 3

EMPHASIZING FUNCTIONAL
RELEVANCE OVER STATE

RESTORATION IN POST-SILICON
SIGNAL TRACING

3.1 Introduction

In post-silicon validation, limited observability is a key obstacle that seri-

ously hinders observation of various internal design signals during execution.

Hence important and functionally relevant internal design signals need to be

instrumented at an observation point (e.g., trace buffers) before first silicon is

available. State-of-the-art methods fail to select signals that are functionally

relevant and most beneficial for design understanding and debugging.

In this chapter, we endeavor to increase the functional relevance of se-

lected signals by departing from the SRR optimizing strategy of prior art.

Instead, our approach was to let the design structure indicate importance of

signals. Our algorithm is based on the Google’s PageRank algorithm [64, 153]

(c.f., Section 3.2.1), as applied to the circuit behavioral design (RTL) and cir-

cuit netlist (c.f., Problem PR1 of Figure 1.10). At the gate level, we applied

PageRank to the structural netlist. For RTL, we applied it to the variable

dependency graph (c.f., Definition 1). The reason for applying PageRank in

these two modes is to study the relative benefits, if any, of signal selection

in an RTL data structure over gate level: applying the same algorithm at

both levels would prevent the variability in analysis due to algorithmic dif-

ferences. The algorithm gives us a rank ordering among important signals

for tracing. We compared the signals selected by our method with the sig-

nals from SRR-based techniques. We used pre-silicon simulation coverage

metrics to establish functional relevance of selected signals. We performed

an initial set of signal selection experiments on a USB design [154], which

has substantially more complex behavior than ISCAS89 benchmarks used in

the literature. Our results showed that compared to SRR-based methods,

our method selected signals with high functional relevance. Further, we plot-
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ted SRR against the behavioral coverage achieved by the signals selected by

SRR optimizing methods e.g., [55] and our method. We found that high

SRR values do not correlate to high behavioral coverage.

Scalability is an important concern in automatic post-silicon trace signal

selection as its methods work on a fine-grained netlist level. A modern SoC

contains hundreds of different IP blocks [3, 4, 155] with millions of logic

elements such as flip-flops. SRR-based methods [55, 56, 58, 60] update the

rate of restorability of each flip-flop in the design in each iteration based on

the currently selected trace signals. For a large-scale design such as a modern

SoC, this iterative update is computationally expensive and has a chance to

run out of time and/or memory. This considerably limits the scalability of

the state-of-the-art algorithms. On the other hand, our PageRank based

algorithm as applied to netlist (PRoN) avoids the restorability computation

altogether, relying on design structure and connectedness as the guideline for

signal selection. This is a cheaper operation.

In our hardware tracing solution, we also focus on scalability, and demon-

strate experiments at an industrial scale. We show results on the publicly

available multi-core SoC design, OpenSPARC T2 [156, 157]. OpenSPARC

T2 contains several heterogeneous IPs and reflects many of the complex fea-

tures of an industrial SoC design. We selected several large and complex

modules from OpenSPARC T2 that contain up to 14,000 flip-flops and up

to 74,000 logic elements for our experiment. The scale and complexity of

these design modules are several orders of magnitude greater than those of

the traditional ISCAS89 benchmarks used in signal selection literature. This

added complexity helps to illustrate the divergence between gate-level state

restorability and functional behavior.

Our experiments on OpenSPARC T2 design modules showed that state-

of-the-art signal selection techniques [55, 56, 58, 60] could not finish signal

selection for designs consisting of no more than 2,800 flip-flops due to timeout

and large peak memory usage (up to 30 GB). Our PRoN algorithm was able

to select trace signals for designs containing approximately 14,000 flip-flops

within 13 seconds with a peak memory usage of up to 1.5 GB. Our results

showed that PRoN has much better scalability than other state-of-the-art

signal selection algorithms for industrial-scale designs.

While the original PageRank was sufficiently accurate for our ISCAS89 and

USB experiments, application of this algorithm to the large-scale OpenSPARC
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T2 introduced problems that needed to be addressed at scale. Complex

interconnections such as feedback and feed-forward loop structures among

flip-flops and deep hierarchical signal connections from instantiated modules

to the top module exposed issues in the original PageRank algorithm. The

density and complexity of connections in the real design caused PageRank to

infer that the outputs were the most important. For our purpose, tracing an

output signal does not add any value, since it is observable anyway. In this

chapter, therefore, we further modify PageRank to correctly rank internal

signals for large, complex designs. We will refer to this modified PageRank

as PageRank on Netlist (PRoN) hereafter.

In this chapter, we also provide a more comprehensive experimental study

to compare the quality of the selected trace signals in terms of behavioral cov-

erage by using total restorability-based [55, 63], hybrid-analysis-based [60],

ILP-based [57, 58] and simulation-based [56] signal selection algorithms.

Our experimental results, when we applied the algorithms to OpenSPARC

T2, were in conformance with the results presented with USB design. We

compared our PRoN method with the only two SRR-based techniques that

could finish for at least some of the OpenSPARC T2 design modules. The

behavioral coverage of the signals selected by our PRoN method consistently

outperformed (up to 50.94% more) the signals selected by SRR optimizing

methods [55, 60]. Further, we showed that signals selected by PRoN executed

up to 4.59% more design paths than did signals selected by SRR-optimizing

methods on large-scale designs. PRoN achieves higher path coverage for

the signals than selected by the SRR-optimizing methods due to enhanced

PageRank metric as it prefers flip-flops that are highly connected and part

of many design paths.

For completeness, we determined the extent of restorability achieved by

all the algorithms, including PRoN. Interestingly, the signals selected by

PRoN although not optimized for SRR, often achieve up to 7.3× (on an

average 3.15×) higher restorability on large-scale designs compared to signals

selected by SRR-optimizing methods.

Our contributions are as follows.

• We show through empirical evidence and analysis that SRR is severely

limiting as a general metric for post-silicon signal selection. We argue

that a different metric is necessary that directly correlates with the
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extent of coverage of the execution flow of the design.

• We propose a new scalable signal selection algorithm that performs sig-

nificantly better than algorithms designed to maximize SRR in achiev-

ing functional coverage. Our algorithm is adapted from Google’s [64,

153] PageRank algorithm. It ranks some signals as more important

than the others based on the connectivity in the structural netlist or

the RTL variable dependency graph. Higher ranked signals are better

candidates for tracing. It also avoids inclusion of entire arrays, and

selects relevant signals instead. Finally, it typically selects the signals

and their operating conditions together due to their high co-occurrence

and consequent similar ranking.

• We demonstrate the scalability and viability of our PRoN signal selec-

tion algorithm on the OpenSPARC T2 SoC design modules containing

up to 14,000 flip-flops and up to 74,000 logic elements. To the best

of our knowledge, this is the largest-scale application of netlist- level

signal selection approaches demonstrated in the literature.

• Finally, we provide a comprehensive comparison of our PRoN technique

with all the signal selection based techniques (and tools) available in the

public domain in terms of behavioral coverage. This provides conclusive

empirical evidence for the functional superiority of the signals selected

by our method as compared to the state-of-the-art SRR-based methods.

3.2 Preliminaries

3.2.1 PageRank algorithm

Google PageRank algorithm [64, 153] ranks a web page as important if it

is hyperlinked from many important web pages. This ensures that not all

hyperlinks have equal weights. PageRank computes an importance score for

each web page based on its incoming hyperlinks. Let p denote a web page.

Let B(p) denote the set of pages that have an outgoing link to p, and let F(p)

denote the set of pages to which p has outgoing links. Let ε be a constant
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between 0 and 1.0 and let n be the number of web pages. The PageRank

PR(p) of p is defined as:

PR(p) = (1− ε)
∑

pi∈B(p)

PR(pi)

|F (pi)|
+
ε

n
(3.1)

The first term in the Equation 3.1 represents the probability that a random

surfer will navigate to a web page. If the surfer is caught in a cycle of web

pages, then it is unlikely that he or she will continue in the cycle forever.

The second term accounts for the surfer’s eventual departure from the cycle

and navigation to a random web page.

3.2.2 Trace buffer parameters

Hardware tracing is one among many different DfD architectures (c.f., Sec-

tion 2.2.1) that are used to address the observability limitation during post-

silicon debugging. A trace buffer has two parameters, i) width i.e. the number

of bits of signals that can be traced simultaneously, ii) depth i.e. the number

of cycles for which signals values can be traced.

3.2.3 Variable dependency graph

We define a variable dependency graph for an RTL design based on the

semantics of the Verilog hardware description language [8]. An expression

is a function defined over variables and operators. A left reference refers to

a variable that appears on the left side of a Verilog assignment expression.

A right reference refers to all variables that are not left references. Let vi

and vj be two Verilog variables. A variable vi depends on vj if there exists

a Verilog assignment to vi that will execute only if a right reference to vj is

evaluated.

Definition 1 A variable dependency graph (VDG) is defined as the

weighted directed graph G = (V,E,W) with vertices V, directed edges E,

and edge weights W. Let each vertex vi ∈ V denotes a Verilog variable. Let

each directed edge (vi, vj) ∈ E denotes a dependence between vi and vj. If

eij = (vi, vj) ∈ E, then vj depends on vi. Let wij ∈ W be the weight of
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1 module arb2(input clk, rst, req1, req2,

2 output gnt1, gnt2);

3 reg gnt_, gnt1, gnt2;

4 always @(posedge clk or posedge rst)

5 if(rst)

6 gnt_ <= 0;

7 else

8 gnt_ <= gnt1;

9 always @(*)

10 if(gnt_)

11 begin

12 gnt1 = req1 & ~req2;

13 gnt2 = req2;

14 end

15 else

16 begin

17 gnt1 = req1;

18 gnt2 = req2 & ~req1;

19 end

20 endmodule

Figure 3.1: Verilog code of a two-port arbiter design.
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Figure 3.2: Variable dependency graphs (VDG) for the two-port arbiter
of Figure 3.1. Here V = {req1, req2, gnt , gnt1, gnt2, clk, rst}. Ig is the
importance score of a node.
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(a)

Signal Cyc1 Cyc2 Cyc3 Cyc4 Cyc5
A 0 0 0 0 1
B 1 0 1 0 X
C 1 1 0 1 0
D X 0 0 0 0
E X 1 0 0 0
F X X 1 0 0
G X 0 0 0 0
H X X 0 1 0

(b)

Figure 3.3: (a): Example circuit [55]. (b): State restoration for circuit shown
in Figure 3.3a applying algorithm of [55].

the edge eij ∈ E that summarizes the control and data dependencies between

(vi, vj) in a Verilog design.

We use the two-port arbiter of Figure 3.1 as our running example. Fig-

ure 3.2 shows the variable dependency graph G of the two-port arbiter of Fig-

ure 3.1. The edge weight w(gnt ,gnt1) = 2 summarizes two control dependencies

between gnt and gnt1 at line 12 and line 17 of Figure 3.1.

3.2.4 Signal reconstruction and SRR calculation

State Restoration Ratio (SRR) [55] is defined as the sum total of the number

of signals traced and the number of signals restored expressed as a fraction

of the number of signals traced, i.e. SRR = (total number of signals traced

+ total number of signals restored) / (total number of signals traced).

We calculate SRR for the simple circuit shown in Figure 3.3a. Let us

assume that the trace buffer can record values of two signals. The restored

values of the other signal states that use the method of [55] are shown in Fig-

ure 3.3b. The signals that are chosen via total restorability computations are

A and C. The selected signals are shown in grey. Since ten signal values are

traced and 22 values are restored, the SRR with this selection is 3.2.

3.2.5 Simulation based coverage metrics

In this section, we define several simulation-based coverage metrics that are

used in pre-silicon simulation environment to quantify the design behavior

covered by a testbench.
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Definition 2 The line coverage is defined as the fraction of total design

statements (like blocking, non-blocking, and assign statements) that are ex-

ecuted in a design simulation.

Definition 3 The branch coverage is defined as the fraction of total branches

(like If-else, Case statements) that are executed in a design simulation.

Definition 4 The condition coverage is defined as the fraction of condi-

tions of all branches that are executed in a design simulation.

Definition 5 The path coverage is defined as the fraction of total design

paths that are executed in a design simulation.

Definition 6 The toggle coverage is defined as the fraction of total bits

of a wire/register that change from a value of zero (1’b0) to one (1’b1) and

back from one (1’b1) to zero (1’b0) in a design simulation. A bit is said to

be fully covered when it toggles back and forth at least once.

3.3 Inadequacy of SRR as a metric

3.3.1 A motivating example

In this example we provide a comparison of selected signals corresponding

to interesting high-level behavior between SRR based signal selection meth-

ods and our proposed PRoN method. We show that using LC3B [158], a

16-bit academic processor in which we attempt to reconstruct the micro-

architectural state.

We applied the SRR based signal selection technique SigSeT 1 [55] that

is designed to maximize the SRR [55]. It selects the complete ISDU FSM

(functional state machine of LC3B) state registers, some bits of the program

counter (PC), and some bits of the instruction register (IR) at the top of the

list. With this set of signals, we can recreate a few control states, but not

the rest of the processor state. Without the complete PC and IR, it is not

possible to determine which instruction will be processed and fetched from

memory next.

As a point of contrast with the above results, consider the performance of

our PRoN algorithm that does not seek to maximize SRR (c.f., Section 3.4)
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on the same example. PageRank selects all of the ISDU FSM state registers,

all 16 bits of PC and IR as complete words, and NZP branching registers.

This is sufficient to check the sequence of states in the design, the opcode and

operands fetched, all transitions in the control state machine, and branching

behavior. PRoN ranks all of the control signals with high priority, while

ranking eight 16-bit data registers lower. This helps in reconstructing the

micro-architectural state of LC3B.

The above example suggests a key problem with the utility of SRR as

a metric: it treats all gate-level design states as “equals”. Reconstructing

any specific design state is not considered more valuable than reconstructing

any other state. However, practical debugging experience suggests that some

signals are inherently more valuable for validation and debug than others.

Also, some signals can provide useful state information only in the presence

of some other signals as well. For example, reconstructing only the lower-

order bit of a program counter (PC) provides little information on program

behavior or execution flow, while reconstructing all bits of the PC can provide

significant insight. Consequently, signals selected to optimize SRR do not

necessarily facilitate debugging.

3.3.2 Deconstructing SRR inadequacies

In particular, SRR is not useful for signal selection for designs with the

following features.

Large arrays: In such designs, individual array elements are typically less

valuable for debugging than are control signals that affect reads and writes

to the arrays. Methods that optimize SRR, on the other hand, would tend

to reconstruct individual array values.

On-chip instrumentation: Modern IC designs include a significant amount

of on-chip hardware instrumentation that do not contribute to functionality,

including Design-for-Test (DFT) features, instrumentation for security, and,

indeed, hardware to enable post-silicon debug and control. Since SRR is ag-

nostic to design intent, selection based on SRR typically includes a sampling

of signals for different functionalities as well as different instrumentation fea-

tures. The result is that the traced signals are inadequate for functional

debugging while also not providing sufficient design visibility to enable vali-
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dation of instrumentation.

Complex protocols: Most multi-core systems and SoC designs include de-

sign blocks (referred to as “IP”) that coordinate through complex protocols.

One of the critical applications of hardware trace is to validate these protocol

implementations during post-silicon debugging. This implies that the traced

signals include the messages communicated across the IPs during system ex-

ecution. However, SRR does not account for the relative importance of these

signals. Indeed, algorithms that optimize SRR would tend to favor signals in

larger IPs with more design states while missing smaller IPs; thus, routers in

communication fabrics through which protocol messages are communicated

would typically be ignored.

Algorithm 1 Pseudo-code of PRoN algorithm

1: procedure PRoN(G, G ′, error, ε)
2: G = (V , E),G ′ = (V , E ′) {if (vi, vj) ∈ E , then (vj, vi) ∈ E ′}
3: error: error bound for rank matrix convergence
4: ε: damping factor
5: prank1 ← PageRank(G, error, ε)
6: prank2 ← PageRank(G ′, error, ε)
7: for v in G do
8: prankhm(v)← HM(prank1(v), prank2(v)) {HM: Harmonic Mean}
9: end for

3.4 PageRank-based trace signal selection algorithm

3.4.1 PageRank for netlist

We apply the PageRank algorithm [64, 153] to the circuit netlist. Algorithm 1

details the PRoN algorithm. In this section we apply it on the example circuit

shown in Figure 3.3a.

Network construction: We parse the synthesized netlist of an RTL de-

sign to construct a directed graph G = (V , E) representing the connectivity

between different logic elements, where every v ∈ V represents a logic ele-

ment and every directed edge (vi, vj) ∈ E represents a connection between

the logic elements vi and vj. Figure 3.4 shows the directed graph for the

example circuit in Figure 3.3a.
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Figure 3.4: Circuit network G for the example circuit of Figure 3.3a. Each
node in G is a logic element and each edge in G follows the connectivity in
the circuit. Each edge of G is annotated with importance contributions from
each node.

PageRank value calculation: After constructing the directed graph for

the circuit, we apply PageRank algorithm to compute the importance of

each node. The directed graph in Figure 3.4 has 14 logic elements (eight

sequential elements and six logic gates). Each node transfers its importance

equally to the nodes to which it links. For example, node A has three out-

links, so it will transfer 1/3 of its importance to each of the nodes OR1,

AND1, and AND3. In general, if a node has n out-links, it will pass on 1/n

of its importance to each of the nodes to which it is linked. Following this

importance transition rule, we annotate every edge of the graph in Figure 3.4

with the corresponding importance value.

Initially we assume an equal rank for each of the nodes i.e. if there are n

nodes in the network, every node will have a rank of 1/n. In Figure 3.4 each

node has a rank of 1/14. As each incoming link increases the rank of a node,

we update the rank of each node by adding the importance of the incoming

links. We continue this until the rank of all of the nodes stabilizes. We use

a standard error tolerance value in the PageRank algorithm, which is 1e-6,

to check for convergence in the power iteration process. If the PageRank

values across two iterations is within this error tolerance, the rank of nodes

is assumed to have stabilized and is returned. In the example network, nodes

G and H do not have any outgoing links, and PageRank refers to them as

dangling nodes.

Dangling nodes would cause the final rank of each node to converge to

0, and the importance of these nodes cannot be propagated further. Since
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Figure 3.5: Nodes of G of Figure 3.4 annotated with importance values in
successive iterations and the final importance value as calculated by PRoN.
PRoN selects flip-flop F and C (shown in double circle) to trace as trace
buffer width is 2.

dangling nodes and disconnected components are quite common in the in-

ternet as well as in common circuits, a positive constant between 0 and 1.0

(typically 0.15) is introduced, which is the damping factor ε [153]. We add a

virtual directed edge from G and H to every other node in the network and

assign ε to every outgoing edge from G and H.

After adjustment of the dangling nodes, we recalculate the rank of each of

the nodes in the graph until the PageRank value stabilizes. For our example,

the initial value, intermediate value, and final value of the PageRank of each

node is shown in Figure 3.5.

Let 0 < ε < 1 be a constant source of importance. Let rk denote r in

the k-th iteration of the rank computation. Let A be the adjacency matrix

of size n × n where each A(ai, aj) is the ratio between the number of right

references to variable i in all assignments to variable j to the number of right

references to variable i in all assignments. Let r0
i = 1

n
. We compute the

importance score of each of the variables according to Equation 3.2.

rk+1 = (1− ε)Ark +
ε

n
(3.2)
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3.4.2 PageRank for RTL

To compute the importance score of each of the variable in an RTL design,

we apply PageRank algorithm on the variable dependency graph (c.f., Defi-

nition 1) of the RTL design.

We represent a variable dependency graph Gg = (Vg, Eg,Wg) by using

a n × n adjacency matrix A with rows and columns corresponding to the

design variables. Let aij denote the number of right references to variable i

in all assignments to variable j, and ai denote the number of right references

to variable i in all assignments. Let Aij = aij/ai if ai > 0 and let Aij =

1/n otherwise. Intuitively, we see that Aij is equal to the fraction of right

references to variable i that exist in all assignments to variable j. If no

references to variable i exist in the RTL, then we assume that a right reference

to variable i exists in an assignment to each other variable. Hence, Aij = 1/n

when ai = 0.

The importance computation iteratively computes the importance score

of each variable in the design until the score is stabilized. We have found

through experimentation that when ε = 0.5, the global importance score

distribution of the variable agrees with the designer intuition. The equation

for computing the rank of variables in the variable dependency graph is the

same as Equation 3.2.

Figure 3.2 shows the variable dependency graph of the arbiter of Fig-

ure 3.1. Each node in the graph is labeled with its respective variable and

the PageRank score. Edge weights denote the number of dependencies be-

tween the variables. For example, since gnt1 depends on req1 in both lines

12 and 17 of the Verilog, the weight of the edge (req1, gnt1) is equal to

2. Any edge without a specified weight has a a weight equal to 1. From

the final ranks after convergence, we find that gnt , which is the arbitration

signal is ranked highest, after which gnt1 and gnt2, the two signals receiving

the grant are ranked. Other signals are equally (less) important. We select

the top 20% of the signals rank sorted by the PageRank algorithm.

3.4.3 Enhancing the ranking metric of selected signals

PageRank algorithm implicitly adjusts for the in-degree of each node. When

the same principle applied on a circuit netlist graph with loop structures
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among flops, PageRank algorithm tends to select output signals from the

IP modules as high-ranking signals. Since output signals are connected to

many internal signals, they inherit their importance values from these signals.

This gives the PageRank algorithm a false sense of importance. For the signal

selection application, selecting output signals is not useful, since these are

already observable. Our objective in signal selection is to select important

internal signals for observation.

To resolve that concern, we enhance the signal-ranking metric of the tra-

ditional PageRank algorithm. We calculate a reverse PageRank for each of

the nodes in the circuit graph. We create a graph G ′ = (V , E ′) for the origi-

nal circuit graph G. For each directed edge e ∈ E connecting a pair of nodes

(vi, vj) in the original circuit netlist graph G, we create a directed edge e′ ∈ E ′

connecting the same pair of nodes (vj, vi) in the graph G ′. Then we calculate

a PageRank score for each of the graph nodes in G ′. We use prank1(v) to

denote the PageRank of a node in G, and prank2(v) to denote the PageRank

of a node in G ′. Intuitively, we see that PageRank algorithm will assign high

importance values to the nodes in G ′ that have high in-degrees from other

important nodes. The in-degree of a node in G ′ maps to the out-degree of the

same node in the G. To combine prank1(v) and prank2(v), we calculate their

harmonic mean (HM) following the idea of the importance metric in [126].

We use prankhm to denote this metric.

prankhm(v) =
1

1
prank1(v)

+ 1
prank2(v)

By virtue of HM, prankhm will assign high ranks to the flip-flops that

have high values for both prank1 and prank2. Intuitively, this means that

prankhm selects flip-flop nodes that are connected to many other important

flip-flop nodes via incoming edges and can propagate their values to many

other flip-flops via outgoing edges. This indeed resolves our original concern

about PageRank algorithm’s selection of output nodes for tracing. For the

output nodes of a circuit netlist, the in-degree is very high but the out-degree

is very low. On the other hand, for the input nodes of a circuit netlist, the

out-degree is very high but the in-degree is zero. Therefore prankhm will

not select either outputs or inputs for tracing. Instead, it prefers important

internal nodes of the design. In our running example, PRoN selects flip-

flop F and C (c.f., Figure 3.5) to trace which are neither outputs nor inputs
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of the design rather they are internal to the design. Our SRR results for

OpenSPARC T2 IP modules given in Section 3.6.2 supports that conclusion.

3.4.4 Functionally relevant signal selection by PRoN

The PRoN algorithm analyzes the structure of the circuit netlist and selects

a signal that is important in the design, based on which other important

signals that signal is connected to. If a variable is well-connected to other

connected variables, it is highly likely that variable forms an important part

of the design function. In a well-designed hardware, design structure should

be closely related to functionality, for optimal performance of the design im-

plementation. We believe variable importance is a metric that transitions

quite faithfully between the structure and the function of a design, thereby

capturing how a design structure, does in fact, correspond to the functional-

ity. Our results in Section 3.6.3 support this intuition.

3.5 Experimental setup

Design testbed: We primarily use the publicly available USB 2.0 [154],

ISCAS89 benchmarks, and multi-core OpenSPARC T2 SoC [156, 157] to

demonstrate our results. Comparing the testbeds, we observe that the IS-

CAS89 benchmarks have no more than 1700 flops, and the USB despite

being more complex, synthesizes to around 1800 flops. In contrast, the

OpenSPARC T2 is a large, industry-scale design with high complexity. We

describe the experimental setup with respect to the OpenSPARC T2 in the

rest of this section.

OpenSPARC T21 is a multi-core SoC containing several heterogeneous IPs

and many of the complex design features of an industrial SoC design. Fig-

ure 3.6 shows an IP-level block diagram of OpenSPARC T2. For these exper-

iments, we used several larger and complex IP modules of the OpenSPARC

T2 design. Details of the ISCAS89 benchmarks, USB 2.0, and several large

and complex modules of OpenSPARC T2 in terms of the total number of

flip-flops and the logic elements are shown in Figure 3.7. Table 3.1 details

1OpenSPARC T2 source: http://www.oracle.com/technetwork/systems/openspa

rc/opensparc-t2-page-1446157.html
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Figure 3.6: Block diagram of OpenSPARC T2 processor. NCU: Non-
cacheable unit. MCU: Memory controller unit [156, 157].

number of sub-modules and the functionality of each of T2 design modules

that we used in our experiment. ISCAS89 benchmarks contain up to 1728

flip-flops and 23815 total logic elements whereas the OpenSPARC T2 design

modules contain up to 13746 flip-flops and 74350 total logic elements. The

presence of a several orders of magnitude more flip-flops and logic elements

in the different design modules of OpenSPARC T2 make these modules func-

tionally complex and larger than the three largest designs of the ISCAS89

benchmark and the USB design.

Testbenches: To simulate and collect trace signal values from each of the

OpenSPARC T2 design modules, we used our own constrained-random test-

benches [159] written in SystemVerilog [10] as per the design specification.

We could not use any tests that are included in the OpenSPARC T2 regres-

sion suites, since those tests were meant to simulate the whole SoC. We used

SystemVerilog monitors during simulation and recorded trace signal values

into an output trace file.

Tools used for comparison: We compared the scalability and quality

of the selected trace signals of our PRoN method against those of several

other state-of-the-art algorithms. We used SigSeT 1 [55], SigSeT 2 [58], Hy-

brSel [60], and AASR [56]. Since SigSeT 1, SigSeT 2, HybrSel, and PRoN ac-

cept designs in ISCAS89 format, we converted the OpenSPARC T2 and USB

design modules into ISCAS89 netlist format for comparison among these al-

gorithms. We synthesized the OpenSPARC and USB design modules by

using the Synopsys Design Compiler with the NanGate 45 nm library [160],
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Table 3.1: Functional details of each of the OpenSPARC T2 design modules
used in our experiment. NoS: No. of sub-modules in the design module
excluding standard library cells. LoC: Total lines of code excluding standard
library cells. DMU: Data management unit. CCX: Cache crossbar. NCU:
Non-cacheable unit. SIU: System interface unit. NIU: Network interface
unit. MSI: Message signal interrupts.

Module NoS LoC Module Functionality
Name

mcu rdpctl ctl 29 2872 Controlling memory read pointer for
the memory controller unit

dmu dsn 14 3156 Interface IP controlling data flow
and interrupt between core side IPs
and I/O side IPs

dmu rmu 43 3376 DMU internal IP responsible for or-
derly movement of transaction data
in and out of DMU pipeline

pmu 32 4008 SPARC core power management
unit

dmu clu 21 5211 DMU internal IP moving data re-
lated to memory read, memory
write, DMA read, DMA write, and
interrupts

dmu cmu 15 5260 DMU internal IP managing DMU
pipelines and serves as the ordering
point for transactions in the in/out
DMU pipeline

ncu fcd ctl 85 8427 Controlling clock-domain crossing
data transfer between CCX and
NCU at the core clock speed

dmu ilu 57 10489 Interface IP controlling transaction
level data flows between DMU and
PCI express unit

mcu drif ctl 113 16493 Controls data movement between
MCU and DRAM interface unit

ncu scd ctl 262 23882 Controlling clock-domain crossing
data transfer between SIU, DMU,
and NIU at the I/O clock speed

dmu imu 239 77230 DMU internal IP serving MSIs, PCI
Express messages, on-chip and inter-
nal interrupts (interrupts generated
due to both error and events)
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Table 3.2: Runtime and maximum memory usage of SigSeT 1 [55], Hy-
brSel [60], and PRoN during the signal selection phase on ISCAS89 bench-
marks and USB. The benchmarks are arranged in increasing order of total
number of logic elements. T: Runtime in seconds. Mem: Peak memory
usage in MB.

Bench Logic SiGSeT 1 HybrSel PRoN
mark elements

DFF Total T Mem T Mem T Mem

USB2.0 1757 13601 181 385 735.36 1204.28 2.01 805.7
s35932 1728 17793 9.52 498 17.6K 389 7.74 275.8
s38584 1452 20705 150 285 8.94K 287 7.86 298.81
s38417 1636 23815 208 702 19.4K 359 9.54 326.9

and constrained the library such that the synthesized DC netlist contained

only basic logic gates like AND, OR, NOT, NAND, NOR, and D flip-flop

(DFF). We then converted the DC netlist into the ISCAS89 format. For

AASR [56], we used the GTECH 180 nm library that is included in the Syn-

opsys Design Compiler package, since AASR can only parse design netlists

consisting of GTECH library logic elements.

Execution platform: All experiments on the ISCAS89 designs and USB

were run on an AMD Opteron 8-core 22xx processor with 15GB of RAM.

All experiments on the OpenSPARC T2 design modules were run on an

Intel Xeon CPU E3-1240 8-core processor running at 3.4 GHz with 16 GB

RAM. In most of our experiments, we used simulation based coverage metrics

for behavioral coverage, including line coverage, condition coverage, branch

coverage, toggle coverage, FSM coverage, and path coverage.

3.6 Experimental results

3.6.1 Scalability of different signal selection algorithms

In this experiment we show scalability in terms of runtime and peak mem-

ory usage of different signal selection algorithms based on SRR including

SigSeT 1 [55], SigSeT 2 [58], HybrSel [60], and AASR [56]. We compare

these algorithms to our PRoN algorithm.

For this experiment we use the three biggest designs of the ISCAS89
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benchmark (namely s3592, s38417, and s38584), and USB 2.0 design, we

compare SigSeT 1, HybrSel and our PRoN algorithm (Table 3.2). On the

OpenSPARC T2, we compare many more SRR based signal selection tools

with our PRoN algorithm. The tools under comparison are AASR, HybrSel,

SigSeT 1, SigSeT 2, and PRoN. We run experiments on 11 large and com-

plex design modules of the OpenSPARC T2 and compare runtime and peak

memory usage (c.f., Figure 3.8a, Figure 3.8b, Figure 3.8c, and Table 3.3).

We consider a trace buffer width of 256 bits and trace buffer depth of 512

cycles. To record the maximum memory usage for ISCAS89 benchmarks and

USB, we used the Massif tool in Valgrind [161]. For OpenSPARC T2 design

module, we use the datetime package of Python to measure runtime. We

use a virtual memory monitor written in Python to monitor the peak virtual

memory usage of each algorithm during signal selection for OpenSPARC T2

design modules. We iterate PageRank until the values of the ranking matrix

are stabilized. For each algorithm we set a timeout limit of 7,200 seconds.

HybrSel, and AASR iteratively updates the restorability rate of each state

element based on the current signal selection, a computationally intensive

approach that is time consuming.

Note that in Table 3.2, PRoN uses considerably large peak memory usage

for USB due to large fanouts of most of the logic elements (often more than

five) causing high outdegree for many nodes in the G for USB. PageRank of a

node thus propagates to many other connecting nodes requiring large number

of iterations to converge. This causes high memory usage for PRoN for USB

design.

We make the following observations from Table 3.2, Table 3.3 and Fig-

ure 3.8a, Figure 3.8b, and Figure 3.8c. From Figure 3.8a, we find that

SigSet 1 could not complete signal selection for designs consisting of more

than 2,800 flip-flops because of its large peak memory usage of 30 GB or

more. In Figure 3.8b, we note that HybrSel failed to complete signal selec-

tion for any design containing more than 2,900 flip-flops when the allowed

time limit was varied up to 7,200 seconds in steps of 1,800 seconds. Hence

in Table 3.3, we report the timeout value for HybrSel as 1,800 seconds. Both

SigSeT 2 and AASR failed to complete signal selection for any OpenSPARC

T2 designs within the allowed time limit of 7,200 seconds. None of the SRR

based signal selection algorithms finished for designs greater than 17,743 logic

elements.
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Figure 3.8: Scalability of different signal selection algorithms in terms of
runtime (in seconds) and peak memory usage (in MB) for 11 different
OpenSPARC T2 design modules using (a) SigSeT 1 [55], (b) HybrSel [60],
and (c) PRoN.

In contrast, our PRoN algorithm was able to complete signal selection

within 13 seconds and with a peak memory usage of up to 1.5 GB for the

largest OpenSPARC T2 design module consisting of 13,746 flip-flops.

HybrSel, AASR, and SigSeT 2 update the rate of restorability of each flip-

flop in the design in each iteration based on currently selected signals. For

a large number of flip-flops of T2 design modules, this iterative update was

computationally intensive and took more time and memory, and often failed

to complete signal selection in a reasonable amount of time. PRoN is able

to scale because it analyzes topography of the design identifying important

variables.

Since two of the tools, namely, AASR and SigSeT 2 do not complete signal

selection on any of the OpenSPARC T2 design modules, our comparison of

selected signals in forthcoming experiments is limited to the two SRR-based

tools that completed. Among them, since SigSeT 1 and HybrSel do not

complete for any modules larger than the dmu clu, we limit comparisons to

the top six modules listed in Table 3.3.

This experiment shows that PRoN signal selection algorithm

scales to industry standard large-scale designs compared to the

state-of-the-art SRR-based signal selection techniques.
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Table 3.4: Comparative analysis of SRR using SigSeT 1 [55], HybrSel [60],
and PRoN on ISCAS89 benchmarks and USB 2.0.

Benchmark SiGSeT 1 HybrSel PRoN

s35932 4.7 4.7 4.7
s38417 4.0 3.8 3.9
s38584 4.7 4.6 4.7
USB2.0 3.7 3.5 3.5

Table 3.5: Comparative analysis of SRR for signals selected in Table 3.3 on
OpenSPARC T2 design modules. M1: pmu. M2: mcu rdpctl ctl. M3:
dmu dsn. M4: dmu ilu. M5: ncu fcd ctl. M6: dmu clu. Rand: SRR
calculated using trace values obtained from design simulation using random
stimulus. Sim: SRR calculated using trace values obtained from design sim-
ulation using constrained random stimulus. ⊗: No SRR values as SigSeT 1
fails to select signals for dmu ilu (c.f.,Table 3.3). �: SRR calculation failed
using random stimulus for ncu fcd ctl. §: Highest SRR achieved using ran-
dom stimulus. ¶: Highest SRR achieved using constrained random stimulus.

Module SiGSeT 1 HybrSel PRoN
Name Rand Sim Rand Sim Rand Sim

M1 3.83 2.55 14.54§ 2.18 8.46 7.62¶

M2 2.97 2.27 4.06 3.32¶ 29.65§ 1.72
M3 13.61 6.52 14.1 2.92 14.14§ 8.03¶

M4 ⊗ ⊗ 33.16§ 16.8 29.65 19.55¶

M5 � 1.97 � 6.71¶ � 3.98
M6 37.2 8.98 37.49§ 9.83¶ 35.99 8.41

3.6.2 Comparison of algorithms with respect to restorability

In this experiment, we compare the restorability (measured by SRR) achieved

by algorithms designed to optimize the SRR metric with our PRoN algo-

rithm, that is not designed to optimize this metric. Since SRR is the de

facto standard to measure goodness of selected signals, we evaluate our al-

gorithm according to this metric for the sake of completeness.

To calculate SRR values for the ISCAS89 benchmarks and USB 2.0 design,

we simulate the designs using randomized testbenches. We use the top 20%

of the signals selected by each method for each benchmark and restore signals

for 5,000 cycles.

For the OpenSPARC T2 design modules, since we construct SystemVerilog

testbenches (c.f., Section 3.5), we could use signal values from simulation
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traces in addition to randomized signal values to calculate the SRR. We use

a trace buffer width of 256 bits and a trace buffer depth of 512 cycles for

both simulation-value-based and randomized-value-based SRR calculations.

Table 3.4 and Table 3.5 show comparative analysis of SRR values for dif-

ferent algorithms on ISCAS89, USB and different OpenSPARC T2 design

modules respectively.

SRR calculation involves forward propagation and backward justification

[55] for selected trace signals. In several cases, signal restoration tool was

not able to compute SRR on the selected signals from Table 3.3. In one case,

none of the randomized signal values converged, possibly because the number

of signals to be restored overflowed and eventually restoration process ran

out of memory.

On the ISCAS89 benchmarks, none of the methods outperformed the oth-

ers. PRoN’s SRR value is lower than that of SigSeT 1 and HybrSel. On

OpenSPARC T2 design modules, HybrSel and PRoN consistently performed

better than SigSeT 1. Table 3.5 shows that PRoN achieves the highest SRR

values for three IP modules while using simulation-based trace values (¶ in

column 7), and for two IP modules while using randomized trace values (§ in

column 6). This is interesting, given that PRoN is not optimized for SRR.

We note that the SRRs of the ISCAS89 benchmarks in Table 3.4 are sig-

nificantly lower than the values reported in previous papers [55, 56, 60]. SRR

(c.f., Section 3.2.4) is a ratio and is defined as (total number of signals re-

stored + total number of signals traced) / (total number of signals traced).

Previous work [55, 56, 60] used a fixed-length trace buffer of size 8/16/32,

and therefore the denominator is 8/16/32. If the average number of signals

restored is 1000, the RR value will be 126/63/32. We select approximately

350 signals in each design, making our denominator very large. So even with

1200 signals restored, the SRR value is small. In Table 3.5, when trace sig-

nal values from simulation are used for restoration compared to randomized

values, the SRR values of the T2 benchmarks were 4× smaller. The reason

is that randomization assigns a concrete binary value of 1’b1 or 1’b0 to every

selected trace signal at each cycle, effectively maximizing the SRR value. In

a simulation, that is more reminiscent of the real scenario, there are cycles

in which a 1’bX (an unknown value) is assigned to a traced signal. An un-

known value does not help to restore any other new signal values, effectively

reducing the SRR values. A traced signal may have 1’bX if it is part of a
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control bus or a data bus. Whenever the control or data bus enable signal is

de-asserted, the control bus or the data bus does not have a concrete binary

value, causing the trace value of the traced signal to become 1’bX.

Section 3.6.1 concerns the scalability of each of the signal selection meth-

ods. AASR and HybrSel simulate the design netlist in each iteration for the

specified number of cycles during signal selection to find out the best signals

to trace. For these big designs, with a larger number of specified cycles,

AASR and HybrSel take much longer time to complete signal selection and

often times out. Hence, in order to have a fair comparison of runtime and

peak memory usage for signal selection of all the methods on a reasonable

number of designs, we used a trace buffer depth of 512 cycles. We found that

for any trace buffer depth value of greater than 512 cycles, even HybrSel

can only complete signal selection for no more than four designs, thereby

reducing the value of this experiment.

This section concerns the signal restoration post tracing using traced signal

values. We restore signals with traced signal values using a combination of

forward propagation and backward justification. We can afford to restore up

to 5000 cycles in this phase, since there is no iterative calculation, unlike in

the signal selection phase.

This experiment demonstrates that signals selected by PRoN al-

though not optimized for SRR, often achieve higher restorability.

3.6.3 Comparing behavioral coverage of selected signals

In this experiment we study the behavioral coverage achieved by the selected

signals using different tools. In pre-silicon simulation, behavioral coverage

metrics are intended to check for important high-level behavioral and func-

tional coverage of the design.

In this experiment, we use USB 2.0 and OpenSPARC T2 design modules.

For USB design, we trace values of 355 flip-flops for a simulation duration

of 175 ms. Such a long trace is needed since at least 100 ms of simulation is

required to activate different important states (such as the high-speed state

mode of USB) of the USB line control module. We use the traced value of

the selected signals along with five important input control signals as the

stimulus in RTL and measure the behavioral coverage by using Synopsys
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VCS. The behavioral coverage consists of four components, namely branch

coverage, line coverage, condition coverage and FSM coverage. Table 3.6

and Table 3.7 show the behavioral coverage values reported by VCS. For

each of the methods, we do not report the FSM coverage for u4 (usbf rf),

since it did not contain any state machines. Also, we do not report the FSM

and conditional coverage for u2 (usbf mem arb), as it is a combinational

design module. For OpenSPARC T2 design modules, we traced values of

256 flip-flops for 512 cycles. We used the traced values to measure the be-

havioral coverage by using Synopsys VCS. The behavioral coverage consists

of six components namely line coverage, condition coverage, branch coverage,

FSM coverage, toggle coverage, and path coverage.2 Table 3.8, and Table 3.9

show the behavioral coverage values reported by VCS. For SigSeT 1, VCS

was able to calculate path coverage for two different design modules whereas

for HybrSel and PRoN, VCS was able to calculate path coverage for three

different design modules by using traced signal values. The path coverage

values are highlighted with § in Table 3.8 and with ¶ in Table 3.9.

For the USB design, the behavioral coverage of signals selected by PRoN is

up to 42% (with an average of 19.6%) greater than that of the signals se-

lected by SigSeT 1. The signals from PageRank on RTL achieves behavioral

coverage up to 70% (average of 30%) more than the signals from SigSeT 1.

This experiment shows that compared to SigSeT 1, PRoN and PageRank on

RTL selected more functionally relevant signals from the USB design.

For the OpenSPARC T2 design modules, the overall behavioral coverage of

signals selected by PRoN is up to 30.12% (with an average of 5.64%) greater

than that of the signals selected by SigSeT 1 and up to 13.12% (with an

average of 5.83%) greater than that of the signals selected by HybrSel. For

OpenSPARC T2 we do not report FSM coverage for several design modules,

since those modules do not contain any explicit state machines.

Line coverage: Line coverage (Section 3.2.5) of signals selected by PRoN is

up to 61.25% (with an average of 10.34%) greater than that of the signals

selected by SigSeT 1 and up to 20.31% (with an average of 5.52%) greater

than that of the signals selected by HybrSel.

Branch coverage: Branch coverage (Section 3.2.5) of signals selected by

PRoN is up to 17.46% (with an average of 8.38%) greater than that of the

2We enabled path coverage in VCS by using the -lca option.
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signals selected by SigSeT 1 and up to 42.72% (with an average of 7.4%)

greater than that of the signals selected by HybrSel.

Condition coverage: Condition coverage (Section 3.2.5) of signals selected

by PRoN is up to 24.62% (with an average of 14.25%) greater than that

of the signals selected by SigSeT 1 and up to 50.94% (with an average of

11.62%) greater than that of the signals selected by HybrSel.

Path coverage: For SigSeT 1, the path coverage (Section 3.2.5) was up to

25.38% (with an average of 22.79%); for HybrSel the path coverage was up to

23.85% (with an average of 20.32%); and for PRoN, the path coverage was up

to 28.44% (with an average of 25.10%). For large designs, like OpenSPARC

T2 design modules, even a small increment in path coverage manifests in the

execution of a large number of additional design paths. In our analysis, sig-

nals selected by PRoN achieved up to 4.59% (with an average of 3.33%) more

path coverage than SigSeT 1 and HybrSel, implying that signals selected by

PRoN executed a larger number of additional design paths compared to the

signals selected by SigSeT 1 and HybrSel. This experiment shows that com-

pared to SigSeT 1 and HybrSel, PRoN selects functionally superior signals

for tracing from OpenSPARC T2 design modules. This result supports our

modification to the PageRank metric to select important internal signals as

demonstrated in Section 3.4.3.

Toggle coverage: Toggle coverage (Section 3.2.5) of signals selected by

SigSeT 1 is up to 3.35% greater than that of PRoN but on average, toggle

coverage of the signals selected by PRoN is 0.37% greater than the signals

selected by SigSeT 1. Toggle coverage of signals selected by HybrSel is up to

4.82% (with an average of 2.26%) greater than that of the signals selected

by PRoN.

This experiment shows that signals selected by PRoN achieve

higher behavioral coverage on industry standard large-scale de-

signs outperforming the signals selected by the state-of-the-art

SRR based techniques.
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Figure 3.9: Graphs showing lack of correlation between SRR and for (a) Line
coverage, (b) Condition coverage, (c) Branch coverage, (d) FSM coverage,
and (e) Overall coverage on different USB modules u0, ... u5 for the signals
selected by SigSeT 1 [55], and PRoN. ρ: Correlation co-efficient between
SRR and the coverage metric. p: p-value indicating rejection probability for
the null hypothesis of an uncorrelated system producing datasets that have
ρ as extreme as the one computed from observed datasets.

3.6.4 Correlation analysis between SRR and high-level
behavioral coverage metrics

This experiment finds if there is a correlation between high SRR values and

the behavioral coverage metrics from pre-silicon, in order to determine the

extent of high-level functional coverage of SRR. For each of the USB design

modules, we traced top 5%, 10%, 15%, and 20% flip-flops per tool and for

each of the OpenSPARC T2 design modules, we traced top 32, 64, 128,

and 256 flip-flops per tool. We used the trace signal values and the design

netlist to calculate the SRR value via backward justification and forward
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Figure 3.10: Graphs showing lack of correlation between SRR and for (a) Line
coverage, (b) Condition coverage, (c) Branch coverage, (d) Toggle coverage,
and (e) Overall coverage on different OpenSPARC T2 modules M1, ... M6

for the signals selected by SigSeT 1 [55], HybrSel [60], and PRoN. M1:
pmu. M2: mcu rdpctl ctl. M3: dmu dsn. M4: dmu ilu. M5: ncu fcd ctl.
M6: dmu clu. ρ: Correlation co-efficient between SRR and the coverage
metric. p: p-value indicating rejection probability for the null hypothesis of
an uncorrelated system producing datasets that have ρ as extreme as the one
computed from observed datasets
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propagation [88]. Also, we used the traced signal values and the instrumented

Verilog code of each of the design module and calculated different coverage

metrics using Synopsys VCS. We use scatter plots to analyze correlation

between SRR and the coverage metric values for each group of traced flip-

flops for each of the design modules.

In Figure 3.9a, Figure 3.9b, Figure 3.9c, Figure 3.9d, and Figure 3.9e we

analyze the correlation between SRR and the different components of behav-

ioral coverage for USB design modules. In Figure 3.10a, Figure 3.10b, Fig-

ure 3.10c, Figure 3.10d, and Figure 3.10e, we analyze the correlation between

SRR and the different components of behavioral coverage for OpenSPARC

T2 design modules. For each such scatter plot, we have calculated the Pear-

son rank correlation coefficient ρ and have shown it below the scatter plot.

This experiment shows that there is no correlation between the

SRR value and behavioral coverage. This underscores the point

that a high SRR has low to no correlation with functional behavior.

3.6.5 Sensitivity analysis between behavioral coverage and
trace buffer width and depth

This experiment finds the sensitivity of the behavioral coverage metrics from

pre-silicon with the different configurations of the trace buffer width with a

fixed trace buffer depth. For each of the OpenSPARC T2 design modules,

we traced top 32, 64, 128, and 256 flip-flops per tool for 512 cycles. We use

line plots to analyze the sensitivity between each of the coverage metrics and

the different trace buffer width.

In Figure 3.11a, Figure 3.11b, Figure 3.11c, Figure 3.11d, and Figure 3.11e

we analyze the sensitivity between different components of the behavioral

coverage and different trace buffer width for OpenSPARC T2 design modules.

This experiment shows that the behavioral coverage increases

with the increasing width of the trace buffer. This underscores the

point that post-silicon observability is positively sensitive to the

trace buffer width.
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Figure 3.11: Graphs showing change in (a) Line coverage, (b) Condition
coverage, (c) Branch coverage, (d) Toggle coverage, (e) Overall coverage and
with different configuration of trace buffer width on different OpenSPARC
T2 modules M1, ... M6 for the signals selected by SigSeT 1 [55], HybrSel [60],
and PRoN. M1: pmu ( ). M2: mcu rdpctl ctl ( ). M3: dmu dsn ( ).
M4: dmu ilu ( ). M5: ncu fcd ctl ( ). M6: dmu clu ( ). SigSeT 1: ,
HybrSel: , PRoN: .
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Figure 3.12: Comparison between signals selected by the traditional [63]
PageRank algorithm and the modified PageRank algorithm of current work
for various OpenSPARC T2 design modules. M1: pmu. M2: mcu rdpctl ctl.
M3: dmu dsn. M4: dmu ilu. M5: ncu fcd ctl. M6: dmu clu.
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3.6.6 Comparison of the signals selected by traditional
PageRank algorithm and PRoN (modified PageRank
algorithm)

This experiment demonstrates the improvement in signal selection of PRoN,

the modified version of the PageRank algorithm over the traditional [63]

PageRank algorithm. We compare the improvement in terms of i) the per-

centage of the selected internal design signals and ii) the improvement in the

behavioral coverage metrics of the selected signals. For this experiment, we

choose a trace buffer width of 256 bits for each of the OpenSPARC T2 design

modules per method.

Comparison in terms of selected internal design signals: In Fig-

ure 3.12 we analyze the percentage of internal design signals among the sig-

nals that are selected for tracing by two methods. In traditional PageRank

algorithm, up to 77.34% of selected signals are design output signals (with an

average of 54.10%) whereas for the PRoN no more than 19.14% of selected

signals are design output signals (with an average of 6.77%). While for tra-

ditional PageRank algorithm up to 74.60% of selected signals are internal

design signals (with an average of 45.89%), for PRoN up to 100% of selected

signals are internal design signals (with an average of 93.23%). Further anal-

ysis shows that the output signals that are selected by PRoN are connected

to highly important internal design signals in a feedback loop making those

signals relevant for tracing. PRoN selects up to 77.35% more internal design

signals (with an average of 41.80%) for tracing compared to the traditional

PageRank algorithm of [63].

This experiment shows that for tracing, the modified PageRank

algorithm selects significantly more internal design signals com-

pared to the traditional [63] PageRank algorithm method, thereby

increasing post-silicon observability.

Comparison in terms of behavioral coverage: In this experiment, we

study the behavioral coverage achieved by the selected signals using tradi-

tional PageRank algorithm [63] and PRoN. Our experimental setup and the

behavioral coverage metrics that are used for this comparison, are similar to

that of Section 3.6.3.

In Table 3.10 we compare the behavioral coverage of the signals that are

selected by the two methods. Our analysis shows that the signals selected
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Table 3.11: High-level functionality covered by PRoN and SigSet 1 selected
signals on USB Netlist. P: Partial bit selected.

Signal Module Signal Functionality Sig PRoN
Name Name SeT 1

no bufs0 usbf pe

A. Indicates available buffer size is less than payload size
to switch to other buffer, B. BUF0 is full in DMA mode
(Only BUF0 is used in DMA mode), C. Indicates if the

BUF1 needs to be selected for next operation by the
functional controller

7 X

token pid
sel

usbf pe
Handshaking signals indicating the packet accepting

capacity of the buffer
7 X

dma out
buf avail

usbf ep rf
Indicates that there is a space for at least one

MAX PL SZ packet in the buffer
7 X

inta,
intb

usbf rf

A fully programmable interrupt to provide full flexibility
to software, the interrupts may be endpoint dependent or

independent, indicating an error condition or overall
events that have global meaning

7 X

state usbf pe
Indicates the states of operation of the USB protocol

engine
X X

state
usbf utmi

ls
Indicates the states of operation of the USB protocol

engine
P X

abort usbf pe

Indicates to abort an ongoing data transfer if the
following conditions happen A. Buffer overflows

(Received data packet size is too big and Rx Data Valid
is asserted), B. Register end points matched and

protocol engine is not in IDLE mode, C. Received packet
size is more than MAX PL SZ

7 X

chirp
count

usbf utmi
ls

A counter to initiate USB high speed mode 7 X

pid seq
err

usbf pe
An interrupt notifying USB function controller a loss of

sync due to bad packets resulting in CRCs
7 X

by PRoN achieves up to 13.31% (average 6.97%) more overall behavioral

coverage compared to the signals selected by the traditional PageRank al-

gorithm. For large designs like OpenSPARC T2 design modules, even a

small increment in path coverage manifests in the execution of a large num-

ber of additional design paths. In our experiment, signals selected by the

PRoN achieves up to 7.51% (average 5.73%) path coverage compared to

the traditional PageRank algorithm implying that signals selected by the

PRoN executed a large number of additional design paths compared to the

signals selected by the traditional PageRank algorithm.

This experiment shows that signals selected by PRoN achieve su-

perior behavioral coverage on industry standard large-scale designs

outperforming the signals selected by the traditional PageRank al-

gorithm.
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3.6.7 High-level functionality selected by PRoN on USB
netlist

To give a flavor of the type of high-level functionality captured by the sig-

nals selected, we provide a qualitative analysis of two algorithms, PRoN and

SigSet 1. In Table 3.11, for each signal, we list the corresponding RTL mod-

ule and its high-level functionality. PRoN selects all the FSM state regis-

ters of the USB protocol engine (usbf pe) and the USB line state module

(usbf utmi ls) and other important signals. On the other hand, SigSet 1

selects only one signal completely and the other partially.

3.7 Conclusion

In light of our experimental findings, the use of SRR as a signal selection

metric is not advisable. Instead, an alternate metric needs to be proposed

for hardware signal tracing, such as assertion coverage [61, 62, 63]. This

comprises the number of assertions that can be evaluated using the traced

signal values. This metric certainly captures high-level behavioral intent

since it uses assertions. It may be noted that it depends heavily on the

quality of assertions, increasing the subjectivity of the approach. There is a

need to define and characterize a metric for signal selection that reflects high

level functionality better than SRR.

In conclusion, we have shown that the state restoration ratio as a metric

does not reflect the behavioral coverage of the design relevant to practical

post-silicon debugging. Unsurprisingly, we found no study reporting on the

usage of SRR based methods on industry-scale design; all reported applica-

tions have been on small benchmarks (e.g., ISCAS89) that are not represen-

tative of the complexities of an industrial integrated circuit (IC). The current

and future needs of industry are better served if more representative metrics

are used for signal selection. We present a signal selection method based on

analyzing structural connectivity of the circuit netlist and RTL which in turn

selects functionally relevant signals by computing variable importance. We

demonstrate experiments at a scale and complexity that has hitherto never

been used in hardware signal tracing literature. Our algorithm can scale to

very large designs with moderate usage of computing resources, and selects

high-quality signals that closely reflect high-level behavioral functionality.
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CHAPTER 4

APPLICATION LEVEL HARDWARE
TRACING FOR SCALING POST-SILICON

DEBUGGING

4.1 Introduction

An expensive component of post-silicon SoC validation is application-level

use-case validation. Use-case validation forms a key part of compatibility

validation (c.f., Section 2.1.1) that requires considerable amount of manual

effort and often takes weeks to months of validation time. Consequently, it

is critical to determine techniques to streamline and automate this activity.

In this chapter, we develop a method for hardware tracing that specifically

targets post-silicon use-case validation (c.f., Problem PR2 of Figure 1.10).

The key idea is to raise the design abstraction level at which we apply hard-

ware tracing. We apply hardware tracing at the application-level instead

of applying at the netlist-level and behavioral-level of Chapter 3 (c.f., Fig-

ure 1.8). Given a collection of use-case scenarios and the system-level proto-

cols that they activate (and the constituent messages), our algorithm com-

putes the messages that are most valuable for debugging and error localiza-

tion. We also develop heuristics for maximizing trace buffer utilization in the

context of message selection.

Although state-of-the-art methods [55, 56, 57, 63, 95] optimize SRR to

quantify signal restorability of the selected signals, a high restorability (SRR)

of gate level signals may not correspond to crucial message buffers for the

application use-cases. In our experiments on a USB controller design, we

found that existing signal selection techniques could reconstruct no more than

26% of required interface messages across various design blocks. Analyzing

at the application level provides our method the context to select 100% of

the messages required for debugging.1 This underlines the need for a

1SRR based algorithms typically select flip-flops internal to the design for tracing
whereas our method selects interface registers (either incoming or outgoing) for the rele-
vant IPs for tracing.
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focused approach for message selection that accounts for protocols

induced during use-case validation.

To show scalability and viability of our approach, we perform our ex-

periments on a publicly available multicore SoC design OpenSPARC T2

SoC [156, 157] (c.f., Section 3.5). The scale and complexity is orders of

magnitude more than traditional ISCAS89 benchmarks used to demonstrate

signal selection techniques. We inject complex and subtle bugs, with each

bug symptom taking several hundred observed messages (up to 457 messages)

and several hundred thousands of clock cycles (up to 21,290,999 clock cycles)

to manifest. Our analysis shows that we can achieve up to 100% trace buffer

utilization (average 98.96%) and up to 99.86% flow specification coverage

(average 94.3%). Our messages are able to localize each bug to no more

than 6.11% of the total paths that could be explored. Our selected messages

helped to eliminate up to 88.89% of potential root causes (average 78.89%)

and localize to a small set of root causes.

Our method needs a priori definition of system-level protocols at transac-

tion level. Our framework uses protocol formalizations as sequences of trans-

actions or flows. There is an increasing trend to generate transaction-level

models specifically with formalizations like flows, to enable early validation,

prototyping, and software development activities [14, 15, 16, 162]. Our work

shows how to leverage this collateral for post-silicon trace selection.

We make following important contributions.

• We propose the first solution to scale hardware tracing to industrial-

scale realistic SoCs.

• We develop a targeted message selection for hardware tracing targeted

toward post-silicon use-case (application level) validation by leveraging

available architectural collaterals (e.g., messages, transaction flows).

• We propose a technique based on mutual information gain to select

trace messages at the application level. The selected messages are of

high quality and effective for post-silicon use-case failure debugging.
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Figure 4.1: (a) shows a flow for an exclusive line access request for a cache
coherence flow [16] along with participating IPs. (b) shows two legally indexed
instances of cache coherence flow.

4.2 Preliminaries

Conventions: In SoC designs, a message can be viewed as an assignment of

Boolean values to the interface signals of a hardware IP. In our formalization

below, we leave the definition of message implicit, but we will treat it as a pair

〈C, w〉 where w ∈ Z+. Informally, C represents the content of the message

and w represents the number of bits required to represent C. Given a message

m = 〈C, w〉, we will refer to w as bit-width of m, denoted by width(m) or |m|.

Definition 7 A flow is a directed acyclic graph (DAG) defined as a tuple,

F = 〈S,S0,Sp, E , δF , Atom〉 where S is the set of flow states, S0 ⊆ S is the

set of initial states, Sp ⊆ S and Sp ∩ Atom = ∅ is called the set of stop

states, E is a set of messages, δF ⊆ S × E × S is the transition relation and

Atom ⊂ S is the set of atomic states of the flow.

We use F .S,F .E etc. to denote the individual components of a flow F . A

stop state of a flow is its final state after its successful completion. Atom is

a mutex set of flow states i.e., any two flow states in Atom cannot happen

together. Other components of F are self-explanatory. In Figure 4.1a, we

have shown a cache coherence flow along with the participating IPs and the

messages. In Figure 4.1a, S = {Init, Wait, GntW, Done}, S0 = {Init}, Sp
= {Done}, Atom = {GntW}. Each of the messages in the cache coherence

flow is 1 bit wide, hence E = {〈ReqE, 1〉, 〈GntE, 1〉, 〈Ack, 1〉}.

Definition 8 Given a flow F , an execution ρ is an alternating sequence

of flow states and messages ending with a stop state. For flow F , ρ =
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Figure 4.2: Two instances of cache coherence flow of Figure 4.1a interleaved.

s0 α1 s1 α2 s2 α3 . . . αn sn such that si
αi+1−→ si+1,∀0 ≤ i < n, si ∈

F .S, αi+1 ∈ F .E , sn ∈ F .Sp. Trace of an execution ρ is defined as

trace(ρ) = α1 α2 α3 . . . αn.

An example of an execution of the cache coherence flow of Figure 4.1a is

ρ = {n, ReqE, w, GntE, c, Ack, d} and trace(ρ) = {ReqE, GntE, Ack}.
Intuitively, a flow provides a pattern of system execution. A flow can be

invoked several times, even concurrently, during a single run of the system.

To make precise the relation between an execution of the system with par-

ticipating flows, we need to distinguish between these instances of the same

flow. The notion of indexing accomplishes that by augmenting a flow with

an “index”.

Definition 9 An indexed message is a pair α = 〈m, i〉 where m is the

message and i ∈ N, referred to as the index of α. An indexed state is a

pair ŝ = 〈s, j〉 where s is a flow state and j ∈ N, referred as the index of

ŝ. An indexed flow 〈F , k〉 is a flow consisting of indexed message m and

indexed state ŝ indexed by k ∈ N.

Figure 4.1b shows two instances of the cache coherence flow of Figure 4.1a

indexed with their respective instance number. In our modeling, we ensure

by construction that two different instances of the same flow do not have

same indices. Note that in practice, most SoC designs include architectural

support to enable tagging, i.e., uniquely identifying different concurrently

executing instances of the same flow. Our formalization simply makes the

notion of tagging explicit.
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Definition 10 Any two indexed flows 〈F , i〉, 〈G, j〉 are said to be legally

indexed either if F 6= G or if F = G then i 6= j.

Figure 4.1b shows two legally indexed instances of the cache coherence flow

of Figure 4.1a. Indices uniquely identify each instance of the cache coherence

flow.

A usage scenario is a pattern of frequently used applications. Each such

pattern comprises multiple interleaved flows corresponding to communicating

hardware IPs.

Definition 11 Let F ,G be two legally indexed flows. The interleaving F 9G
is a flow called interleaved flow defined as U = F9G = 〈F .S×G.S,F .S0×
G.S0,F .Sp × G.Sp,F .E ∪ G.E , δU ,F .Atom ∪ G.Atom〉 where δU is defined as:

i)
s1

α−→s′1 ∧ s2 6∈G.Atom
〈s1,s2〉

α−→〈s′1,s2〉
and ii)

s2
β−→s′2 ∧ s1 6∈F .Atom

〈s1,s2〉
β−→〈s1,s′2〉

where s1, s
′
1 ∈ F .S, s2, s

′
2 ∈ G.S, α ∈ F .E, β ∈ G.E. Every path in the

interleaved flow is an execution of U and represents an interleaving of the

messages of the participating flows.

Rule i of δU says that if s1 evolves to the state s′1 when message α is

performed and if g has a state s2 which is not atomic/indivisible, then in the

interleaved flow, if we have a state (s1, s2), it evolves to state (s′1, s2) when

message α is performed. A similar explanation holds good for Rule ii of δU .

For any two concurrently executing legally indexed flow F and G, J = F9G,

for any s ∈ F .Atom and for any s′ ∈ G.Atom, (s, s′) 6∈ J.S. If one flow is in

one of its atomic/indivisible state, then no other concurrently executing flow

can be in its atomic/indivisible state.

Figure 4.2 shows partial interleaving U of two legally indexed flow instances

of Figure 4.1b. Since c1 and c2 both are atomic state, state (c1, c2) is an illegal

state in the interleaved flow. δU and the Atom set make sure that such illegal

states do not appear in the interleaved flows.

Trace buffer availability is measured in terms of bits thus rendering bit

width of a message important. In Definition 12, we define a message com-

bination. Different instances of the same message i.e. indexed messages are

not required while computing the bit width of the message combination.
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Definition 12 A message combination M is an unordered set of mes-

sages. The total bit width W of a message combinationM is the sum total

of the bit width of the individual messages contained in M i.e. W (M) =∑k
i=1width(mi) =

∑k
i=1 |mi|,mi ∈M, k = |M|.

We introduce a metric called flow specification coverage to evaluate

the quality of a message combination.

Definition 13 Let F be a flow. The visible flow states visible(α) of a

message α ∈ F .E is defined as the set of flow states reached on the occur-

rence of message α i.e., visible(α) = {s′|s α−→ s′, s, s′ ∈ F .S}. The flow

specification coverage FCov(M) of a message combination M is defined

as the set union of the visible flow states of all the messages in the message

combination, expressed as a fraction of the total number of flow states i.e.,

FCov(M) =
∪ki=1visible(αi)

|F .S| , k = W (M).

4.3 Entropy and mutual information gain

4.3.1 Entropy

The entropy measures the uncertainty in a random variable. It was first

proposed by Shannon [163]. Entropy originated in the information theory,

but we repurpose it to use as a key component in our post-silicon validation

solution. Let X be a discrete random variable with possible values Xval =

{x1, x2, . . . , xn}. Let p(x) be the associated probability mass function of X.

The entropy of the random variable X is defined as follows.

H(X) = −
∑

xi∈Xval

p(xi)log2p(xi) (4.1)

where p(xi) = |X=xi|
|Xval|

denotes the fraction of X in which X = xi.

4.3.2 Mutual information gain

In information theory, the mutual information gain measures the amount of

information that can be obtained about one random variable X by observing
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another random variable Y . The concept of mutual information gain is heav-

ily dependent on entropy (c.f., Section 4.3.1). More precisely, the conditional

entropy of a random variable X with respect to another random variable Y

is the reduction in uncertainty in the realization of X when the outcome of

Y is known. Mathematically, the mutual information gain I(X;Y ) can be

defined in terms of conditional entropy as follows.

I(X;Y )) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X, Y )

= H(X, Y )−H(X|Y )−H(Y |X) (4.2)

where H(X) and H(Y ) are the marginal entropies, H(X|Y ) and H(Y |X) are

the conditional entropies, and H(X, Y ) is the joint entropy of X and Y . The

mutual information gain I(X;Y ) is a non-negative quantity. Consequently,

H(X) ≥ H(X|Y ). For the case of jointly distributed discrete random vari-

ables X and Y , the conditional entropy can be defined as follows.

H(X|Y ) = −
∑
x,y

p(x, y)log2

(
p(x, y)

p(y)

)
=
∑
y

p(y)H(X|Y = y) (4.3)

For jointly distributed discrete random variables X and Y , the mutual infor-

mation gain can be defined as follows.

I(X;Y ) =
∑
x,y

p(x, y)log2

(
p(x, y)

p(x)p(y)

)
(4.4)

Maximizing information gain is done in order to increase flow specification

coverage during post-silicon debugging of usage scenarios. The message se-

lection procedure considers the message combinationM for tracing, whereas

to calculate information gain over U , it uses indexed messages.

Given a set of legally indexed participating flows of a usage scenario U ,

bit widths of associated messages, and a trace buffer width constraint, our

method selects a message combination M such that information

gain is maximized over the interleaved flow U and the trace buffer

82



Step: 1

Find message 

combinations 

Input: System level flows, 

Trace buffer width
Output: Message combination with

Info Gain maximized Trace buffer 

maximally utilized

Step: 2
Selecting a message 

combination based on 

mutual info gain

Step: 3
Packing the trace 

buffer

Figure 4.3: Our message selection methodology.

is maximally utilized.

4.4 Our message selection methodology

For the cache coherence flow example of Figure 4.1a, we assume a trace

buffer width of 2 bits and concurrent execution of two instances of the flow.

ReqE, GntE, and Ack messages happen between 1-Dir, Dir-1, and 1-Dir IP

pairs respectively. ReqE, GntE, and Ack consist of req, gnt. and ack IP

signal and each of the messages is 1-bit wide. Let B = {0, 1} be a binary

set. Following the conventions of a message in Section 4.2, C(ReqE) =

B|req|, C(GntE) = B|gnt|, and C(Ack) = B|ack| denote the respective message

contents. Figure 4.3 shows our message selection methodology.

4.4.1 Step 1: Finding message combinations

In Step 1, we identify all possible message combinations from the set of all

messages of the participating flows in a usage scenario.

While we find different message combinations, we also calculate the total

bit width of each such message combinations. Any message combination that

has a total bit width less than or equal to the available trace buffer width

is kept for further analysis in Step 2.2 Each such message combination is a

potential candidate for tracing.

In the example of Figure 4.1a, there are three messages and
∑3

k=1

(
3
k

)
= 7

different message combinations. Of these, only one (ReqE, GntE, Ack) has

2For multi-cycle messages, the number of bits that can be traced in a single cycle is
considered to be the message bit width.
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a bit width more than the trace buffer width of two bits. We retain the

remaining six message combinations for further analysis in Step 2.

4.4.2 Step 2: Selecting a message combination based on
mutual information gain

In this step, we compute the mutual information gain of the message com-

binations computed in Step 1 over the interleaved flow. We then select the

message combination that has the highest mutual information gain for

tracing.

We use mutual information gain as a metric to evaluate the quality of the

selected set of messages with respect to the interleaving of a set of flows. We

associate two random variables with the interleaved flow namely X and Yi. X

represents the different states in the interleaved flow i.e. it can take any value

in the set S of the different states of the interleaved flow. LetM =
⋃
i Ei be

the set of all possible indexed messages in the interleaved flow. Let Y ′i be a

candidate message combination and Yi be a random variable representing all

indexed messages corresponding to Y ′i . All values of X are equally probable

since the interleaved flow can be in any state and hence pX(x) = 1
|S| . To

find the marginal distribution of Yi, we count the number of occurrences of

each indexed message in the set M′ over the entire interleaved flow. We

define pYi(y) = # of occurrences of y in flow
# of occurrences of all indexed messages in flow

. To find the joint prob-

ability, we use the conditional probability and the marginal distribution i.e.

p(x, y) = p(x|y)p(y) = p(y|x)p(x). P (x|y) can be calculated as the frac-

tion of the interleaved flow states x is reached after the message Yi = y has

been observed. In other words, p(x|y) is the fraction of times x that are

reached, from the total number of occurrences of the indexed message y in

the interleaved flow i.e. pX|Yi(x|y) = # occurrence of y in flow leading to x
total # occurrences of y in flow

. Now we

substitute these values in I(X;Y ) to calculate the mutual information gain

of the state set X w.r.t. Yi.

In Figure 4.2, pX(x) = 1
15
∀x ∈ S. Let Y ′1 = {GntE,ReqE} be a candidate

message combination and Y1 = {1:GntE, 2:GntE, 1:ReqE, 2:ReqE}. For

I(X;Y1), we have p(y = yi) = 3
18
, ∀yi ∈ Y1. Therefore, pX|Y1(x|1 : GntE) =

{1/3 if x = (c1, n2), 1/3 if x = (c1, w2), 1/3 if x = (c1, d2)} and pX,Y1(x, 1 :

GntE) = {1/18 if x = (c1, n2), 1/18 if x = (c1, w2), 1/18 if x = (c1, d2)}.
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Similarly, we calculate pX,Y1(x, 2 : GntE), pX,Y1(x, 1 : ReqE) and pX,Y1(x, 2 :

ReqE). The mutual information gain is given by I(X, Y1) = 1.073 where

I(X, Y1) =
∑

x,y p(x, y)log p(x,y)
p(x)p(y)

.

Similarly, we calculate the mutual information gain for the remaining five

message combinations. We then select the message combination that has the

highest mutual information gain, which is I(X, Y1) = 1.073, thereby selecting

the message combination Y ′1 = {ReqE, GntE} for tracing. Intuitively, in an

execution of U as shown in Figure 4.2, if the observed trace is {1:ReqE,

1:GntE, 2:ReqE}, immediately we can intuitively localize the execution to

two paths shown in red in Figure 4.2 among the many possible paths of U .

4.4.3 Step 3: Packing the trace buffer

Message combinations with the highest mutual information gain selected in

Step 2 may not completely fill the trace buffer. To maximize trace buffer

utilization, in this step we pack smaller message groups that are small enough

to fit in the leftover trace buffer width. Usually, these smaller message groups

are part of a larger message that cannot be fit into the trace buffer, e.g. in

OpenSPARC T2, dmusiidata is a 20 bit-wide message whereas cputhreadid

a subgroup of dmusiidata is 6 bits wide. We select a message group that

can fit into the leftover trace buffer width, such that the information gain of

the selected message combination in union with this smaller message group

is maximal. We repeat this step until no more smaller message groups can

be added in the leftover trace buffer. The benefits of packing are shown

empirically in Section 4.6.1.

In our example, the trace buffer is filled up by the set of selected message

combination. The flow specification coverage achieved with Y ′1 is 0.7333.

4.5 Experimental setup

Design testbed: We primarily use the publicly available OpenSPARC T2

SoC [156, 157] to demonstrate our result. Figure 3.6 shows an IP level

block diagram of OpenSPARC T2. Table 4.1 shows three different usage

scenarios considered in our debugging case studies along with participating

flows (column 2-6) and participating IPs (column 7). Figure 4.4 demonstrates
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Figure 4.4: Different flows from OpenSPARC T2 SoC. (a) Mondo interrupt
flow. (b) NCU upstream flow. (c) PIO read flow.
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Figure 4.5: Experimental setup to convert design signals to flow messages.

a few of the OpenSPARC T2 flows. We also use the USB design [154] to

compare with other methods that cannot scale to the T2.

Testbenches: We used five different tests from fc1 all T2 regression envi-

ronment (c.f., Table 4.2). Each test exercises two or more IPs and associated

flows. We monitored message communication across participating IPs dur-

ing simulation and recorded the messages into an output trace file. We use

System-Verilog monitors shown in Figure 4.5 to convert the RTL signals

of OpenSPARC T2 into flow messages during execution for our large-scale

debugging effort.

Bug injection: We created five different buggy versions of T2, that we

analyze as five different case studies. Each case study comprises five different

IPs. We injected a total of 14 different bugs across (c.f., Table 4.3) the five IPs

in each case. The injected bugs follow two sources, i) sanitized examples of

communication bugs received from our industrial partners, ii) “bug model”

developed at Stanford University in the QED [112, 113, 114, 115] project

capturing commonly occurring bugs in an SoC design. Table 4.3 shows that
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Table 4.1: Usage scenarios and participating flows in T2. PIOR: PIO read
flow. PIOW: PIO write flow. NCUU: NCU upstream flow. NCUD: NCU
downstream flow. Mon: Mondo interrupt flow. Xindicates Scenario i executes a
flow j and 7 indicates Scenario i does not execute a flow j. Flows are annotated
with (No of flow states, No of messages).

Usage Participating Flows Patici- Potential

Scenario
PIOR

(6, 5)

PIOW

(3, 2)

NCUU

(4, 3)

NCUD

(3, 2)

Mon

(6, 5)

pating
IPs

Root
Causes

Scenario 1 X X 7 7 X NCU,
DMU, SIU

9

Scenario 2 7 7 X X X
NCU,
MCU,
CCX

8

Scenario 3 X X X X 7
NCU,
MCU,

DMU, SIU
9

the set of injected bugs are realistic. Table 4.4 shows tracing statistics of the

usage-scenario executions. The tracing statistics implies that the injected

bugs are complex and subtle. It took up to 457 observed messages and

up to 21,290,999 clock cycles for each bug symptom to manifest. These

demonstrate complexity and subtlety of the injected bugs. Following [156,

157] and Table 4.3, we have identified several potential architectural causes

that can cause an execution of a usage scenario to fail. Column 8 of Table 4.1

shows number of potential root causes per usage scenario.

4.6 Experimental results

In this section, we provide details of our large-scale effort to debug five dif-

ferent (buggy) case studies across three usage scenarios of the OpenSPARC

T2 SoC.

4.6.1 Flow specification coverage and trace buffer utilization

Table 4.5 demonstrates the value of the traced messages with respect to flow

specification coverage (Definition 13) and trace buffer utilization. These are

the two objectives for which our message selection is optimized. Messages

selected without packing achieve up to 93.75% of trace buffer utilization
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Table 4.2: Simulation testbench details.

Test Primary Objective of Testbench
Bench

tb1 Generate on-chip Mondo interrupt from PCI Express by
injecting an error in memory management unit (MMU) of
DMU, send PIO read and write request to IO

tb2 Generate on-chip Mondo interrupt using message signal in-
terrupt (MSI), upstream and downstream memory request
and NCU ASI register access

tb3 Upstream and downstream memory requests
tb4 Upstream and downstream memory requests, PIO read and

write request to IO
tb5 Mondo interrupt generation in PCI express unit, PIO read

and write request to IO
tb6 Mondo interrupt generation by sending a malformed MSI

to the IMU of NCU, PIO read and write request to IO

with up to 97.22% flow specification coverage. With packing, message

selection achieves up to 100% of trace buffer utilization and up to 99.86%

flow specification coverage. This shows that we can cover most of the desired

functionality while utilizing the trace buffer maximally.

4.6.2 Path localization during debug of traced messages

In this experiment, we use buggy executions and traced messages to show the

extent of path localization per bug. Localization is calculated as the fraction

of total paths of the interleaved flow. In Table 4.5, columns 7 and 8 show

the extent of path localization. Without packing, we needed to explore no

more than 6.11% of interleaved flow paths using our selected messages. With

packing, we needed to explore no more than 0.31% of the total interleaved

flow paths during debugging. Even with packing, subtle bugs like NCU bug

of buggy design 2 and buggy design 3 needed more paths to explore.

4.6.3 Validity of information gain as message selection metric

We select messages per usage scenario. In Figure 4.6 we analyze the corre-

lation between flow specification coverage and the mutual information gain
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Table 4.4: Tracing statistics. NoM: Number of observed messages between
sensitized bug location and observed symptom. NoC: Number of cycles
between sensitized bug location and observed symptom.

Case Usage Symptom NoM NoC Diagn- Actual

study Scenario
sed

buggy
IP

buggy
IPs

1
Scenario 1

FAIL: Bad
Trap

60 13647749 DMU DMU,
NCU

2 176 329250 NCU NCU,
CCX

3
Scenario 2

FAIL: All
Threads

164 19701000 NCU NCU,
MCU

4 No Activity 457 21290999 NCU DMU,
NCU

5
Scenario

3
GLOBAL
TimeOut

65 18624749 MCU MCU

of the selected messages. Flow specification coverage (c.f., Definition 13) in-

creases monotonically with the mutual information gain over the interleaved

flow of the corresponding usage scenario. This establishes that increase

in mutual information gain corresponds to higher coverage of flow

specification, indicating that mutual information gain is a good metric for

message selection.

Table 4.5: Trace buffer utilization flow specification coverage and path local-
ization of traced messages for 3 different usage scenarios. FSP Cov: Flow
specification coverage (Definition 13). WP: With packing. WoP: Without
packing. 32 bits wide trace buffer assumed.

Case Usage Trace Buffer FSP Cov Path
study Scenario Utilization Localization

WP WoP WP WoP WP WoP

1
Scenario 1 96.88% 84.37% 99.86% 97.22%

0.13% 3.23%
2 0.31% 6.11%
3

Scenario 2 100% 71.87% 99.69% 93.75%
0.26% 5.13%

4 0.10% 2.47%
5 Scenario 3 100% 93.75% 83.33% 77.78% 0.11% 2.65%
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Figure 4.6: Correlation analysis between mutual information gain and flow
specification coverage for different message combinations for three different
usage scenarios.

Table 4.6: Comparison of signals selected by our method with those selected
by SigSeT 1 [55] and PRoN [63] for the USB design. P: Partial bit.

Signal name USB module SigSeT PRoN Info gain

rx data UTMI 7 X X
rx valid line 7 X X
rx active speed 7 X X

rx err 7 X X
rx data valid Packet 7 7 X
token valid decoder 7 7 X

rx data done 7 7 X
idma done Internal DMA X 7 X

tx data Packet 7 7 X
tx valid assembler 7 X X

tx valid last 7 7 X
tx first 7 7 X

send token Protocol 7 7 X
token pid sel engine P P X
data pid sel P 7 X

91



Table 4.7: Selection of important messages by our method.

Message Affecting Bug Message Selected
Bug IDs coverage importance Y / N Usage

scenario
m1 8, 33, 36 0.21 4.76 Y 1, 2
m2 8, 33, 34, 36 0.28 3.57 Y 1, 2
m3 33, 36 0.14 7.14 Y 1, 2
m4 8, 29, 33 0.21 4.76 Y 1, 3
m5 18, 33 0.14 7.14 Y 1, 2
m6 - - N -
m7 - - Y 1, 3
m8 33 0.07 14.28 Y 2
m9 1, 33 0.14 7.14 N -
m10 24 0.07 14.28 Y 2
m11 1, 24 0.14 7.14 Y 2
m12 24 0.07 14.28 Y 2
m13 8 0.07 14.28 Y 2
m14 1, 17, 33 0.21 4.76 Y 2
m15 1, 17, 18, 33 0.28 3.57 N -
m16 1, 17, 18, 33 0.28 3.57 Y 2, 3

4.6.4 Comparison of our method to existing signal selection
methods

To demonstrate that existing Register Transfer Level signal selection meth-

ods cannot select messages in system level flows, we compare our approach

with an SRR-based method [55] and a PageRank based method [63]. We

could not apply existing SRR based methods on the OpenSPARC

T2, since these methods are unable to scale. We use a smaller

USB design for comparison with our method. In the USB [154] design

we consider a usage scenario consisting of two flows. Table 4.6 shows that

our (mutual information gain based) method selects all of token pid sel,

data pid sel and other important interface signals for system level debug-

ging. SigSeT, on the other hand selects signals which are not useful for

system level debugging. Our messages are composed of interface signals, and

achieve a flow specification coverage of 93.65%, whereas messages composed

of interface signals selected by SigSeT and PageRank-based method have a

low flow specification coverage of 9% and 23.80% respectively.

92



T
ab

le
4.

8:
D

ia
gn

os
ed

ro
ot

ca
u
se

s
an

d
d
eb

u
gg

in
g

st
at

is
ti

cs
fo

r
ou

r
ca

se
st

u
d
ie

s
on

O
p

en
S
P

A
R

C
T

2.
T

im
e
:

T
im

e
n
ee

d
ed

to
m

an
u
al

ly
d
eb

u
g

a
ca

se
st

u
d
y

u
si

n
g

tr
ac

ed
m

es
sa

ge
s.

C
a
se

S
tu

d
y

ID
F

lo
w

s
L

e
g
a
l

IP
P

a
ir

s

L
e
g
a
l

IP
p
a
ir

s
in

v
e
st

i-
g
a
te

d

M
e
ss

a
g
e
s

in
v
e
st

i-
g
a
te

d

T
im

e
(i

n
h
o
u
rs

)
R

o
o
t

ca
u
se

d
a
rc

h
it

e
ct

u
re

le
v
e
l

fu
n
ct

io
n

1
3

12
5

25
8

A
n

in
te

rr
u
p
t

w
as

n
ev

er
ge

n
er

at
ed

b
y

D
M

U
b

ec
au

se
of

w
ro

n
g

in
te

rr
u
p
t

ge
n
er

at
io

n
lo

gi
c

2
3

6
67

3
W

ro
n
g

in
te

rr
u
p
t

d
ec

o
d
in

g
lo

gi
c

in
N

C
U

/
co

rr
u
p
te

d
in

te
rr

u
p
t

h
an

d
li
n
g

ta
b
le

in
N

C
U

3
3

10
8

14
2

14
M

al
fo

rm
ed

C
P

U
re

q
u
es

t
fr

om
ca

ch
e

cr
os

sb
ar

to
N

C
U

/
er

ro
n
eo

u
s

C
P

U
re

q
u
es

t
d
ec

o
d
in

g
lo

gi
c

of
N

C
U

4
3

6
19

9
6

E
rr

on
eo

u
s

in
te

rr
u
p
t

d
eq

u
eu

e
lo

gi
c

af
te

r
in

te
rr

u
p
t

w
as

se
rv

ic
ed

5
4

12
5

65
6

E
rr

on
eo

u
s

d
ec

o
d
in

g
lo

gi
c

of
C

P
U

re
q
u
es

ts
in

m
em

or
y

co
n
tr

ol
le

r

93



0 1 2 3 4 5 6 7
(b) Number of selected messages investigated

0

5

10

N
um

be
r 

of
 p

ru
ne

d
 p

ot
en

ti
al

 r
oo

t 
ca

us
es

0 25 50 75 100 125 150 175 200
(a) Number of traced messages investigated

0

5

10

N
um

be
r 

of
 p

ru
ne

d 
 c

an
di

da
te

 le
ga

l I
P 

pa
ir

s

Case Study 1
Case Study 2

Case Study 5
Case Study 3

Case Study 4

Figure 4.7: Root causing buggy IP.

4.6.5 Selection of important messages by our method

For evaluation purposes, we use bug coverage as a metric, to determine which

messages are important. A message is said to be affected by a bug if its value

in an execution of the buggy design differs from its value in an execution

of the bug free design. Intuitively, if multiple bugs are affecting a message,

it is highly likely that message is a part of multiple design paths. The bug

coverage of a message is defined as the total number of bugs that affects a

message, expressed as a fraction of the total number of injected bugs. From

debugging perspective, a message is important if it is affected by very few bugs

implying that the message symptomizes subtle bugs. Table 4.7 confirms that

post-silicon bugs are subtle and tend to affect no more than four messages

each. Column 4, 5 and 6 of Table 4.7 show that our method was able to

select important messages from the interleaved flow to debug subtle bugs.

Table 4.7 shows that message m15 is affected by four bugs and message

m9 is affected by two bugs, but due to their size being wider than 32 bits

trace buffer, our method does not select them.
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Figure 4.8: Selected messages-cause pruning distribution for diagnosis.
Plausible Cause, Pruned Cause.

4.6.6 Effectiveness of selected messages in debugging usage
scenarios

Every message is sourced by an IP and reaches a destination IP. Bugs are

injected into specific IPs (Table 4.3). During debugging, sequences of IPs are

explored from the point a bug symptom is observed, to find the buggy IP. An

IP pair (〈source IP, destination IP〉) is legal if a message is passed between

them. We use the number of legal IP pairs investigated during debugging

as a metric for selected messages. Table 4.8 shows that we investigated an

average of 54.67% of the total legal IP pairs, implying that our selected

messages help us focus on a fraction of the legal IP pairs.

To debug a buggy execution, we start with the traced message in which

a bug symptom is observed and backtrack to other traced messages. The

choice of which traced message to investigate is pseudo-random and guided

by the participating flows.

Figure 4.7(a) plots the number of such investigated traced messages and

the corresponding candidate legal IP pairs that are eliminated with each

traced message. Figure 4.7(b) shows a similar relationship between the traced

messages and the candidate root causes, i.e., the architecture level functions

that might have caused the bug to manifest in the traced messages. Both

graphs show that with more traced messages, more candidate legal IP pairs

as well as candidate root causes are progressively eliminated. This implies

that every one of our traced messages contributes to the debugging process.
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Table 4.9: Representative potential root causes for one case study. Remaining
case studies are available in [164].

Selected
Messages

Potential Causes Potential Implication

reqtot,grant,

mondoacknack,

siincu,

piowcrd

1. Mondo request forwarded from
DMU to SIU’s bypass queue instead

of ordered queue
1. Mondo interrupt not serviced

dmusiidata.

cputhreadid

2. Invalid Mondo payload forwarded
to NCU from DMU via SIU

2. Interrupt assigned to wrong CPU
ID and Thread ID

siincu,
3. Non-generation of Mondo interrupt

by DMU
3. Computing thread fetches operand
from wrong memory location

Figure 4.8 shows that traced messages were able to prune out a large

number of potential root causes in all five case studies. Our traced messages

pruned out up to 88.89% (on an average of 78.89%) of candidate root causes.

4.7 Qualitative debugging case study on effectiveness

of our message selection methodology

It is illuminating to understand the debugging process for one case study to

appreciate the role of the selected messages.

Symptom: In this experiment we used traced messages from Table 4.9.

The simulation failed with an error message FAIL: Bad Trap.

Debugging with selected messages: We consider bug symptom causes

of Table 4.9 to debug this case. From the observed trace messages, siincu

and piowcrd, we identify NCU got back correct credit ID at the end of

the PIO read and PIO write operation respectively. This rules out two

causes out of nine. However, we cannot rule out causes related to PIO

payload since a wrong payload may cause computing thread to catch BAD

Trap by requesting operand from wrong memory location. Absence of trace

messages mondoacknack and reqtot implies that NCU did not service any

Mondo interrupt request and SIU did not request a Mondo payload trans-

fer to NCU respectively. Further, there is no message corresponding to

dmusiidata.cputhreadid in the trace file, implying that DMU was never

able to generate a Mondo interrupt request for NCU to process. This rules

out all causes except cause 3 (1 cause out of 9, pruning of 88.89% of

possible causes) to explore further to find the root cause.
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Root Cause: From [156, 157], we note that an interrupt is generated only

when DMU has credit and all previous DMA reads are done. We found no

prior DMA read messages and DMU had all its credit available. Absence of

dmusiidata message correct CPUID and ThreadID implies that DMU never

generated a Mondo interrupt request. This makes DMU a plausible location

of the root cause of the bug. It took approximately eight hours to manu-

ally diagnose this post-silicon failure using traced messages. The diagnosis

time includes understanding the flow specifications from OpenSPARC T2

manual, identifying different message interleaving, and identifying message

interleaving that is infrequent and deviant from other message interleavings

as a diagnosed symptom of the failure.

4.8 Conclusion

We have developed a system-level message selection methodology for SoC

post-silicon use-case debugging. Our approach exploits various architectural

collateral (e.g., messages, transaction flows) and targets typical usage scenar-

ios exercised during post-silicon debugging. We demonstrate the scalability

of our method on the OpenSPARC T2 SoC, and show through quantita-

tive metrics and qualitative analyses, the value of the selected messages in

real-world root cause analysis. Furthermore, we showed that existing signal

selection methods are not suitable for trace message selection at the system

level. To the best of our knowledge, this is the most large-scale application of

a hardware tracing approach in published literature, arguing for the practical

viability and value to the complex post-silicon debugging process.
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CHAPTER 5

FEATURE ENGINEERING FOR
SCALABLE APPLICATION LEVEL

POST-SILICON DEBUGGING

5.1 Introduction

The post-silicon debug and diagnosis problem is convoluted by the heteroge-

neous IPs and vertically integrated SoC components. Concurrent execution

of multiple flows in different use-cases, extremely long execution traces (po-

tentially spanning over millions of clock cycles), lack of bug reproducibility,

and lack of error sequentiality lead to a mostly manual, ad hoc, unsystematic,

and extremely time-consuming post-silicon debugging effort in the industry.

In our debugging case studies of Section 4.7, it took us up to 14 hours (average

7.4 hours) (c.f., Table 4.8) to debug each of the case studies.

In this chapter, we endeavor to automate post-silicon use-case debugging

by analyzing the intrinsic characteristics of the input trace data without

a priori design knowledge (c.f., Problem PR3 of Figure 1.10) such that the

diagnosis time is shortened. We consider the traced messages (c.f., Chapter 4)

as the input data to the diagnosis problem.

The primary objective of the manual post-silicon debug and diagnosis

(c.f., Section 4.7) is to understand the desired behavior from the specifi-

cation, to identify the correct message interleaving as per the specification,

and to identify one or more message interleaving that are deviant from the

specifications. Machine learning [165, 166] is a systematic study of algorithms

that automatically learn/build a mathematical/statistical model from a large

amount of sample data, commonly known as training data examples. Intu-

itively, machine learning algorithms can substitute human and can learn a

model of the correct and buggy execution using a large amount of post-silicon

trace data as training data examples that is generated during use-case vali-

dation. The primary challenge of applying machine learning is to construct a

representation of input trace data such that the statistical model demarcates
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the correct and buggy behavior clearly based on the data features without

requiring a priori knowledge of the design.

A buggy design behavior can be considered as a corner-case design be-

havior. A corner-case behavior is infrequent and deviant from normal design

behaviors. In machine learning parlance, outlier detection [167, 168] is the

technique to identify infrequent and deviant data points and such infrequent

and deviant data points are called outliers whereas normal data points are

called inliers. Hence, if we can map normal design behavior as inliers and

buggy design behavior as outliers in the machine learning data space, then

we can use outlier detection techniques to automatically diagnose post-silicon

failures. Consequently, the task of learning a buggy design behavior trans-

forms into a task of modeling the buggy design behavior as an outlier.

In post-silicon execution, a failure happens due to the occurrence of one

or more patterns of consecutive messages that are symptomatic of one or

more design bugs. We call such a message pattern as an anomalous mes-

sage sequence. The trace message data has several features e.g., the cycle of

occurrence of a message, the IP interface at which message has happened,

and the message itself. We call these features as raw features of trace data.

Since a buggy design behavior is a corner-case design behavior, it can be

considered as an outlier in the post-silicon data space. We endeavored to

characterize trace data for anomalousness using raw features. Our investiga-

tion found that raw features are insufficient to characterize anomalousness

of trace messages for outlier detection.

Hence we engineer domain specific features that are highly relevant to the

diagnosis task to control the normal and buggy behavior model as seen by

the outlier detection algorithms. The engineered features are generic, i.e.,

they are transformations that can be applied to any hardware designs. We

use those engineered features to map buggy behavior in the raw feature space

as outliers in the engineered feature space. Our engineered features capture

both infrequency and deviancy of a buggy design behavior with respect to

the normal design behaviors. Since anomalous message sequences represent a

deviant design behavior, we use our engineered features to map such anoma-

lous message sequences as outlier data points in engineered feature space. To

make computation tractable, instead of analyzing each of the individual mes-

sage sequences, we pre-process trace messages to create message aggregates

of message sequences and characterize each such aggregates for anomaly.
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A message aggregate with infrequent message sequences contains more in-

formation than [163, 169, 170] a message aggregate with frequent message

sequences. We use entropy to quantify the information content of a message

aggregate. As the number of infrequent messages sequences in a message

aggregate increases, the entropy of the message aggregate increases mono-

tonically. In order to quantify deviancy of a message sequence with respect to

other message sequences in the aggregate, we use a string similarity metric,1

in particular Levenshtein distance [171]. As an aggregate contains more and

more deviant message sequences, the average pairwise Levenshtein distance

of the aggregate increases monotonically. We identify message aggregates

with both high entropy and high Levenshtein distance as outliers and report

them as candidate root causes.

We apply off-the-shelf outlier detection algorithms to the engineered fea-

ture space spanning over entropy and Levenshtein distance. In the engineered

feature space, message aggregates that represent normal behavior will be very

close to each other and densely distributed whereas message aggregates that

represent anomalous behavior will be sparsely distributed and distant from

normal message aggregates.

The primary benefits of this diagnosis solution are – i) the proposed method

automatically learns the normal and anomalous design behaviors from trace

message data without training. Consequently, it helps to identify candi-

date anomalous message sequences without an in-depth understanding of

the design, ii) the engineered features are generic and are independent of any

particular design and/or application, and iii) the proposed method can shift

through a large amount of trace data, thereby improving detection of candi-

date anomalous message sequences that are symptomatic of design bugs.

To show scalability and effectiveness of our automated diagnosis approach,

we perform our experiments on OpenSPARC T2 SoC [156, 157]. We reuse

the five different buggy versions of OpenSPARC T2 design that we created

in Chapter 4 (c.f., Section 4.5). Our analysis shows that the proposed diag-

nosis method is computationally efficient. It incurred runtime of up to 44.3

seconds and peak memory usage of up to 508.7 MB to pre-process trace mes-

sages to create aggregates. To detect outlier message aggregates, it incurred

runtime of up to 18.91 seconds and peak memory usage of up to 508.2 MB.

1A string similarity metric measures pairwise similarity of two strings.
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We also evaluated effectiveness of our engineered features for outlier detec-

tion. We found that each of the candidate anomalous message aggregates has

entropy of up to 4.3482 and Levenshtein distance of up to 3.0. This shows

that our engineered features are highly effective in demarcating anomalous

message aggregates from normal aggregates.

We analyzed improvement in bug diagnosis while using automated diagno-

sis method as compared to manual debugging. We found that the proposed

diagnosis method was able to root-cause up to 66.7% more injected bugs with

up to 847× less diagnosis time. Further, the diagnosis method achieved a

high precision of up to 0.769. This shows that our proposed diagnosis method

is effective and can expedite post-silicon debugging.

Our contributions are as follows.

• First, we pose the post-silicon bug diagnosis problem as an outlier de-

tection problem. We propose a machine learning-based scalable and

efficient technique to automatically diagnose post-silicon use-case fail-

ures. Our bug diagnosis technique learns the buggy design behavior

and normal design behavior automatically from the intrinsic charac-

teristics of the input trace data without any prior knowledge of the

design.

• Second, we systematically model buggy behavior as an outlier and nor-

mal behavior as an inlier in the machine learning data space. To do

so, we engineered two features that are highly relevant to the diagnosis

task. The features are generic i.e., they are design independent and

can be applied to any hardware design. The engineered features char-

acterize the anomalousness of a buggy behavior to tune the model of

buggy behavior and normal behavior as seen by the outlier algorithms.

• We establish with empirical evidence that our bug diagnosis technique

is highly effective and can diagnose many more bugs at a fraction of

time with high precision as compared to manual debugging.

5.2 Preliminaries

We extend the definition of a trace(ρ) of an execution ρ (c.f., Definition 8) to

define message sequence and message aggregate for diagnosis.
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Definition 14 A message sequence m(ρ) of a trace(ρ) is defined as a

subsequence of the trace of the execution. The length k of a message sequence

m(ρ) is defined as the number of messages contained in m(ρ). For example,

for trace(ρ) = α1 α2 α3 . . . αn, m(ρ) = 〈α1 α2 α3〉 is a message sequence

of trace(ρ) of length k = 3. Any two message sequences mi(ρ) and mj(ρ) of

length k are distinct if ∃l ∈ [1, k], αi,l 6= αj,l where αi,l ∈ mi(ρ), αj,l ∈ mj(ρ).

Definition 15 A message aggregate maggr(ρ) of a trace(ρ) is defined as

an unordered set of message sequences of length k. Each distinct message

sequence in a message aggregate is called an unique message sequence of

that message aggregate. For example, maggr(ρ) = {〈α1 α2 α3〉, 〈α2 α3 α4〉}
is a message aggregate of length 3 message sequences of trace(ρ). Each of

the 〈α1 α2 α3〉 and 〈α2 α3 α4〉 is an unique message sequence of maggr(ρ).

5.2.1 Levenshtein distance

The Levenshtein distance is a string similarity metric for measuring the dis-

similarity between two strings. Intuitively, the Levenshtein distance between

two strings is the minimum number of single-character edits e.g., insertions,

deletions, or substitutions, required to change one string into the other.

Mathematically, the Levenshtein distance between two strings a, b (of length

|a| and |b|) La,b(|a|, |b|) is defined as:

La,b(i, j) =


max(i, j) if min(i, j) = 0

min


La,b(i− 1, j)

La,b(i, j − 1)

La,b(i− 1, j − 1) + 1(ai 6=bj)

otherwise

Here 1(ai 6=bj) is the indicator function equal to 0 when ai = bj and equal to 1

otherwise. The La,b(i, j) is the distance between the first i characters of a and

the first j characters of b. Please note, the first element in the minimum refers

to deletion, the seconds element refers to insertion, and the third element

refers to match or mismatch, depending on whether the respective symbols

are the same. For brevity, we will denote La,b(|a|, |b|) as L(a, b).

Let us consider two string A = ‘flee′ and B = ‘leer′. The L(A,B) is 2,

since the following two edits can change A to B, and there is no way to do

it with fewer than two edits.
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1. f lee→ lee (deletion of f from the beginning of A).

2. lee→ leer (insertion of r at the end of A).

The salient features of Levenshtein distance are – i) it is at least difference

of the sizes of the two strings, ii) it is at most the length of the longer string,

iii) it is zero iff the strings are equal, and iv) if the strings are of the same size,

the Hamming distance [172] is an upper bound on the Levenshtein distance.

In the example, L(A,B) is 2 but the Hamming distance is 4.

5.3 Outlier detection for post-silicon debugging

5.3.1 Outliers in machine learning

In machine learning, outliers, also known as anomalies, are defined as data

samples that have characteristics or behaviors which notably deviate from our

expectation [167]. There are two basic characteristics of outliers [167, 168] – i)

outliers are different from the norm and the differences can be captured by the

features and ii) outliers are rare comparing to normal data samples. Initially,

people identify outliers to remove them as part of a data processing procedure

to free machine learning algorithms from the negative influences of outliers.

Presently, people are interested in detecting and analyzing outliers because

outliers are commonly associated with interesting or suspicious events [167].

Despite the straightforward definition of outliers, detecting outliers is chal-

lenging. First, the expected characteristics of the normal samples or the nor-

mal regions in the data space are not easy to define. Hence, the boundary

between outliers and normal samples are often not precise. Moreover, some

outliers only manifest their outlierness in a new feature space that is engi-

neered from the original feature, and the transformation from the original

feature space to the appropriate new feature space can be difficult. Second,

the groundtruth of the outliers is often not available and the cost of obtaining

the groundtruth could be prohibitively expensive. Therefore, in many cases,

outliers have to be determined in absence of the guidance of groundtruth.

Unsupervised outlier detection (UOD) algorithms are developed to iden-

tify outliers through only the patterns and intrinsic properties of the feature
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space, and hence do not require any groundtruth labels. Thus, UOD algo-

rithms offer a high degree of flexibility and find wide applicability.

5.3.2 Different notions of outliers

In the field of outlier detection, the general principle of identifying outliers is

to profile the normal samples in a dataset and then determine the boundary

between the normal samples and outliers. The way that the normal samples

are profiled varies depending on the various notions of outliers.

Classification-based notion: Outliers can be defined by a classifier that

profiles the normal samples. The underlying assumption is that a classifier

can be learned in the feature space to distinguish between the normal and

anomalous class [168]. The classifier would generally learn a representation

of the normal samples or a boundary around the normal samples. Hence,

any sample that does not fit the representation of the normal samples or

stays out of the boundary of the normal samples would be considered as

outliers. When the groundtruth is unavailable, the classifier can be learned

in an unsupervised manner. One-class Support Vector Machine (OCSVM)

[173, 174] is an unsupervised outlier detection method that adopts this notion

of outliers. OCSVM uses SVM with a Gaussian kernel and soft margin

to explicitly learn a decision boundary (hyperplane) that encompasses the

majority of the data samples and allows only a small fraction of data samples

to lie outside of the decision boundary; the samples that lie outside the

boundary are considered as outliers.

Density-based notion: Density-based outliers are based on the assump-

tion that the normal data samples reside in neighborhoods of high density;

however, outliers reside in low-density regions [168]. There are generally two

ways to define the outlierness of a data sample under the density-based no-

tion of outliers: First, the local density of a data sample can be estimated by

the distance of a data sample to its k-nearest neighbors, with larger distances

indicating a lower local densities and hence larger degrees of outlierness; the

distance can be the distance to the kth distant neighbor or the average of

distances of all k neighbors. The k-Nearest Neighbors (kNN) [175, 176] is an

unsupervised outlier detection technique that adopts this notion of outliers

directly and uses the aforementioned distance as the outlier score. Second,
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the relative density of each data sample to the density of their neighbors can

be estimated and used as an indication of outlierness; a normal sample has

a local density that is similar to its neighbors, but an outlier’s local density

is lower than that of its neighbors. Local Outlier Factor (LOF) [177] is an

unsupervised outlier detection method that identifies outliers based on the

relative density of the neighborhoods. LOF first estimates local densities for

each sample. Then, LOF computes the ratio of the local density of a sam-

ple to the local densities of its k neighbors to determine if the sample is an

outlier.

Spectral-based notion: Spectral-based notion of outliers assumes that the

difference between normal samples and outliers can be significantly more ap-

parent when the data is embedded into a lower dimensional subspace [168].

Hence, outlier detection methods that adopts the spectral-based notion of

outliers would approximate the data space using a combination or transfor-

mation of the original features that can enable the outliers to be easily identi-

fied, while capturing the variability in the data. Principal Component Anal-

ysis (PCA) [178] is a method that can project data into a lower dimensional

space, while most of the variability of the data is captured and explained by

the new dimensions. The new dimensions computed by PCA can be used

to define a subspace that capture the normalcy of the data. In other words,

the variability that is not captured by the new dimensions is considered as

anomalous. Thus, deviations from the normal subspace indicates outlierness;

the deviation can be computed by the summing the projected distances of

a sample on all new dimensions. Isolation Forest (IForest) [179, 180] is an-

other unsupervised outlier detection method that utilizes the spectral-based

notion of outliers in the sense that it attempts to identify outliers using only

a subset of the features. IForest recursively select feature and split feature

values in random until samples are isolated. Since outliers are rare and they

lie further away from the normal samples in the feature space, the number

of splittings required to isolate an outlier is less than that of the normal

samples; thus, the number of splittings to isolate a sample can be served as

the outlier score for that sample.
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5.3.3 Metrics of an outlier detection algorithm

Definition 16 The precision of an outlier detection algorithm is defined as

the number of true positives expressed as a fraction of total number of samples

labeled as belonging to the outlier class i.e., Precision = tp
tp+fp

where tp =

number of true positives, fp = number of false positives.

Definition 17 The recall of an outlier detection algorithm is defined as the

number of true positives expressed as a fraction of total number of true pos-

itives and false negatives i.e., Recall = tp
tp+fn

, where fn = number of false

negatives.

Definition 18 The accuracy of an outlier detection algorithm is defined as

the number of samples that are correctly labeled as belonging to both the outlier

class and normal class expressed as a fraction of total number of samples i.e.,

Accuracy = tp+tn
tp+tn+fp+fn

, where tn = number of true negatives.

5.4 Bug symptom diagnosis methodology

5.4.1 Formulation of post-silicon debugging as an outlier
detection problem

A post-silicon execution is normal/non-anomalous if it finishes without any

failures e.g., hangs, deadlock, livelock, crash etc., otherwise an execution is

erroneous/anomalous. For the diagnosis problem, we consider traced mes-

sages during execution as input data. In post-silicon execution, a failure

happens due to the occurrence of one or more message sequence(s) that is

symptomatic of one or more design bugs. We consider such a message se-

quence as an anomalous message sequence. Since an anomalous message

sequence represents a deviant design behavior, we consider such a message

sequence as an outlier in post-silicon execution data space. Consequently,

we formulate post-silicon diagnosis as an outlier detection problem. Given

a set of anomalous post-silicon executions, our diagnosis method

identifies one or more candidate anomalous message sequences.

Since post-silicon execution spans millions of clock cycles, hence for tractable

computation, we segregate raw trace data in multiple cycle ranges. Further,
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(a) Case study 1 (k = 5).
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(b) Case study 3 (k = 5).
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(c) Case study 5 (k = 5).

Figure 5.1: (a), (b), and (c) show inability of raw feature data to demarcate
anomalous message sequences.

we assign an index to every legal IP pair2 and to every unique message that

happens in a post-silicon execution.3 The segregated trace data has three

raw features – i) cycle ranges, ii) the index of a legal IP-pair, and iii) the

index of a message that has occurred. In Figure 5.1 we show raw trace data

in three-dimensional feature space for several case studies (c.f., Section 5.6)

for OpenSPARC T2.

5.4.2 Insufficiency of raw features for diagnosis

An anomalous message sequence has two primary characteristics – i) it is

infrequent and ii) it is dissimilar to other message sequences. An in-depth

inspection of Figure 5.1 shows that the trace data in raw feature space has

the following deficiencies – i) the raw features provide message-specific infor-

2An IP pair is legal if a message is passed between them.
3This index is an enumeration of traced messages and is different from indexed messages

discussed in Definition 9.
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mation, ii) in raw feature space outliers are not well demarcated, and iii) the

raw features fail to provide context of the failure during diagnosis.

Hence, we pre-process raw trace message data to construct message se-

quences and characterize each such message sequences for infrequency and

dissimilarity using engineered features (c.f., Section 5.3.1). To make compu-

tation tractable, instead of analyzing each of the message sequences individ-

ually, we analyze message aggregates of message sequences and characterize

each such aggregates for the anomaly.

5.4.3 Intuition of engineered features

In order to quantify the characterization of anomalousness, we calculate two

engineered feature values of each of the message aggregates – i) entropy

(characterizes infrequency) and ii) Levenshtein distance (characterizes dis-

similarity).

Entropy as an engineered feature: A message aggregate is characterized

as anomalous if it contains one or more infrequent unique message sequences.

An aggregate is considered to be more anomalous if it contains many such in-

frequent unique message sequences. An information theoretic way to quantify

the notion of infrequency is to compute the information content of the aggre-

gate. Entropy (c.f., Section 4.3) is one such metric that succinctly quantifies

information content. An aggregate with frequent unique message sequences

will have less entropy due to less information content. On the other hand,

an aggregate with more and more infrequent unique message sequences will

have higher entropy due to higher information content. The entropy of a mes-

sage aggregate is lower bounded by 0.0 (when the aggregate contains exactly

one unique message sequence) and is upper bounded by log2(n) (when the

aggregate contains exactly one of each of the n unique message sequences).

Levenshtein distance as an engineered feature: Entropy fails to charac-

terize the specific relationship that exists between individual unique message

sequences of a message aggregate. Consequently, we calculate a similarity

metric, in particular, Levenshtein distance (c.f., Section 5.2.1) to quantify

the dissimilarity of the constituent message sequences in a message aggre-

gate. If a message aggregate contains similar unique message sequences, the

dissimilarity score will be small whereas if the message aggregate contains
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Table 5.1: Definition of anomalies using engineered features entropy and Lev-
enshtein distance. Ldist: Levenshtein distance. X: Non-anomalous message
aggregate. 7: Anomalous message aggregate.

Ldist
Entropy

Low High

Low X X
High X 7

dissimilar unique message sequences, the dissimilarity score will be large. A

message aggregate with higher Levenshtein distance will likely to be more

anomalous as compared to another message aggregate with smaller Leven-

shtein distance. Levenshtein distance of a message aggregate is lower bounded

by 0.0 (when the aggregate contains exactly one unique message sequence)

and is upper bounded by the average of Hamming distance [172] of pairwise

unique message sequences (when the aggregate contains n different unique

message sequences).

Let us consider aggregates A1: {‘aba’, ‘bab’} and A2: {‘aba’, ‘cdc’} where

a, b, c, d are messages. For each of the A1 and A2, the entropy is log2(2) = 1.

Although A2 comprises dissimilar unique message sequences as compared to

A1, entropy alone fails to capture that dissimilarity. Hence we calculate the

Levenshtein distance of each of the aggregates to quantify the dissimilarity

of the constituent messages. For A1, L(‘aba’, ‘bab’) = 2 (1 deletion and 1

insertion) and for A2, L(‘aba’, ‘cdc’) = 3 (3 substitutions). Clearly, in spite

of having same entropy, Levenshtein distance helped to identify A2 to be

more anomalous than A1.

In our diagnosis solution, we define a message aggregate as anoma-

lous (i.e., contains anomalous unique message sequences) that has both

high entropy and high Levenshtein distance. Table 5.1 summarizes

our definition of anomalousness of a message aggregate.

Usage of outlier detection algorithms: We apply outlier detection al-

gorithms to the engineered feature data space spanning over entropy and

Levenshtein distance. In the engineered feature space, message aggregates

that represents normal behavior will be very close to each other and will

form a dense cluster. On the other hand, message aggregates that represents

anomalous behavior will be sparsely distributed and distant from the normal

message aggregates. Outlier algorithms output a ranked list of anomalous
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Figure 5.2: Example execution trace and a set of message sequences of length
k = 2 and granularity g = 100 cycles.

message aggregates ranked by outlier scores. We output message sequences

contained in top-five anomalous message aggregates as candidate anomalies.

5.4.4 Example for generating engineered feature values from
raw feature values

We use an example trace of Figure 5.2 to explain the steps for generating en-

gineered feature values. This methodology is parameterized by i) the length

k of the message sequence for which anomaly needs to be detected and ii)

the granularity g in number of cycles at which message aggregates need to

be created. For this example, we use k = 2 and g = 100.

Step 1 (Creation of message aggregates): We use a sliding window of

length k to create a set of k-length message sequences. The set of message

sequences are partitioned into message aggregates based on granularity g. In

the example, the set of two-length message sequences is S= { ab︸︷︷︸
X

, ba︸︷︷︸
Y

, ab︸︷︷︸
X

,

ba︸︷︷︸
Y

, ac︸︷︷︸
Z

}. We partition S at a granularity of 100 cycles which creates two

message aggregates s1 = {X, Y,X} and s2 = {X, Y, Z} where X = ab, Y =

ba, Z = ac.

Step 2 (Identifying unique message sequences and their occurrences

per message aggregate): We identify unique message sequences per mes-

sage aggregate and calculate their number of occurrences. In the example, s1

has two unique message sequences X and Y and s2 has three unique message

sequences X, Y , and Z. In s1, X happened 2 times and Y happened 1 time.

In s2, each of the X, Y , and Z has happened 1 time.

Step 3 (Calculation of entropy and Levenshtein distance per mes-

sage aggregate): We calculate entropy and Levenshtein distance for each
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of the message aggregates using the information of unique message sequences

from Step 2.

In the example, for aggregate s1, p(X) = 2/3 and p(Y ) = 1/3. Hence

H(s1) = −p(X)log2(X)−p(Y )log2(Y ) = −2/3∗ log2(2/3)−1/3∗ log2(1/3) =

0.9182 and L(X, Y ) = 2, L(X,X) = 0, and L(Y,X) = 2. The average

Levenshtein distance of aggregate s1 is (2 + 0 + 2)/3 = 1.33.

Similarly, for aggregate s2, p(X) = 1/3, p(Y ) = 1/3, and p(Z) = 1/3.

Hence H(s2) = − p(X)log2(X) − p(Y )log2(Y ) − p(Z)log2(Z) = − 1/3 ∗
log2(1/3)−1/3∗log2(1/3)−1/3∗log2(1/3) = 1.58 and L(X, Y ) = 2, L(X,Z) =

2, and L(Y, Z) = 2. The average Levenshtein distance of aggregate s2 is

(2 + 2 + 2)/3 = 2.0.

The aggregates s1 and s2 are represented by tuples (0.9182, 1.33) and (1.58,

2.0) respectively in engineered feature space. We input these tuples to outlier

detection algorithms to detect anomalous message aggregates.

5.5 Experimental setup

Design testbed: We use the publicly available OpenSPARC T2 SoC [156,

157] to demonstrate our diagnosis results. Figure 3.6 shows an IP level block

diagram of T2. For the diagnosis experiments, we use the same set of usage

scenarios shown in Table 4.1 and the same five different buggy versions of

T2 SoC design that we analyze as five different case studies in Section 4.5.

Testbenches: We used 37 different tests from fc1 all T2 regression en-

vironment. Each test exercises two or more IPs and associated flows. We

monitored message communication across participating IPs and recorded the

messages into an output trace file using the System-Verilog monitor of Fig-

ure 4.5. We also record the status (passing/failing) of each of the tests.

Anomaly detection techniques: We used six different outlier detection

algorithms, namely IForest, PCA, LOF, LkNN (kNN with longest distance

method), MukNN (kNN with mean distance method), and OCSVM from

PyOD [181]. We applied each of the above outlier detection algorithms on

the failure trace data generated from each of the five different case studies to

diagnose anomalous message sequences that are symptomatic of each of the

injected bugs in each of the case studies.
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(c) Peak memory usage comparison.

Figure 5.3: (a) shows total number of message aggregate samples for different
length message sequences for different debugging case studies. (b) and (c)
demonstrate that our diagnosis methodology is computationally efficient in
terms of runtime and peak memory usage across six different outlier detection
algorithms for each of the case studies.

5.6 Experimental results

In this section we provide insights into our bug diagnosis methodology to

debug five different (buggy) case studies across three usage scenarios of the

OpenSPARC T2 SoC. For these experiments, we have used g = 100000 cycles

and varied k from two to number of valid IP pairs (c.f., Table 4.8) for each

of the case studies. The number of message aggregate samples for different

lengths of message sequences for each of the outlier detection algorithm per

debugging case study is shown in Figure 5.3a.
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5.6.1 Computational efforts for data preprocessing and outlier
message sequence diagnosis

In this experiment, we show scalability of the automated diagnosis methodol-

ogy in terms of runtime and peak memory usage. Figure 5.3b and Figure 5.3c

show runtime and peak memory usage for preprocessing and outlier detec-

tion algorithms. To calculate the average runtime and average peak memory

usage of each of the outlier detection algorithms, we ran each of them 20

times and calculated the average value.

Preprocessing trace message data to create message sequence aggregates

incurred a runtime of up to 44.3 seconds (average 10.8 seconds) and peak

memory usage of up to 508.7 MB (average 457.73 MB). To run each of the

outlier detection algorithms on the processed message aggregates incurred

only up to 18.91 seconds (average 2.77 seconds) and peak memory usage of

up to 508.2 MB (average 451.27 MB). Since preprocessing has up to 443×
(average 3×) more runtime than the running each of the outlier detection

algorithms, we showed runtime in the log10 scale in the Figure 5.3b.

This experiment shows that our preprocessing and diagnosis is

computationally efficient.

5.6.2 Validity of entropy and Levenshtein distance as
engineered feature for outlier message sequence
diagnosis

In this experiment, we analyze the effectiveness of entropy and Levenshtein

distance to identify message aggregates that contain anomalous message se-

quences. In Figure 5.4 we show joint probability distribution of entropy and

Levenshtein distance and in Figure 5.5 we show minimum, maximum, and

average of entropy and Levenshtein distance of anomalous message aggre-

gates across different length message sequences for three different debugging

case studies.

As shown in Figure 5.4, in the engineered feature space, message aggre-

gates for normal behavior form a dense cluster whereas anomalous message

sequences are sparsely distributed and are placed at a distance from the nor-

mal message aggregates. Further, Figure 5.5 shows that message aggregates

that contain anomalous message sequences have entropy of up to 4.3482 (av-
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Figure 5.4: (a), (b), and (c) show that the engineered features demarcate
normal and anomalous message aggregates.
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(c) Case study 3

Figure 5.5: (a), (b), and (c) show that the minimum, maximum, and average
value of engineered features are high for anomalous message aggregates irre-
spective of message sequence lengths. 〈Hmin,Hmax,Havg〉: Minimum, max-
imum, average entropy. 〈Lmin,Lmax,Lavg〉: Minimum, maximum, average
Levenshtein distance.

erage 2.08) and Levenshtein distance of up to 3.0 (average 1.5734).

This experiment validates that entropy and Levenshtein distance

are valuable and effective engineered features in demarcating the

anomalous message aggregates from normal message aggregates.

5.6.3 Agreements among different outlier detection
algorithms in detecting outlier message sequences

In this experiment, we assess the extent of agreement between anomalies

identified by various outlier algorithms (c.f., Section 5.3). Since this set of

algorithms uses different methods for outlier detection, we surmise that the

confidence in an anomalous message aggregate is higher, if multiple outlier

detection algorithms identify it as such. For this analysis, we consider the
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Table 5.2: Diagnosis statistics for different outlier detection algorithms for
different case studies using OpenSPARC T2 SoC [156, 157]. IForest: Isola-
tion Forest algorithm [179, 180]. PCA: Principal Component Analysis [178].
LOF: Local Outlier Factor based algorithm [177]. D: Fraction of injected
bugs diagnosed by an outlier detection algorithm. fp: Total number of
false positive message sequences (no more than 37% anomalous message
sequences). P: Precision of an outlier detection algorithm. OS: Overall
diagnosis statistics for each of the outlier detection algorithm per debugging
case study.

Case IForest PCA LOF
Study D tp fp P D tp fp P D tp fp P

1 0.75 9 4 0.69 0.25 7 3 0.7 0.5 2 2 0.5

2 0.67 17 10 0.63 0.34 24 9 0.73 0.34 12 1 0.92

3 0.34 6 4 0.6 0.34 6 4 0.6 0.34 4 0 1.0

4 1.0 7 3 0.7 0.34 6 4 0.6 0.34 3 2 0.6

5 1.0 8 2 0.8 1.0 8 2 0.8 1.0 8 2 0.8

OS 0.73 9.4 4.6 0.67 0.4 10.2 4.4 0.69 0.47 5.8 1.4 0.81

top 10% of anomalous message aggregates per outlier detection algorithm

per case study.

Our analysis showed that six outlier detection algorithms agree for a total

of six anomalous message aggregates that diagnose 13.33% of injected bugs,

five outlier detection algorithms agree for a total of 17 anomalous message

aggregates that diagnose 53.33% of injected bugs, three outlier detection al-

gorithms agree for a total of six anomalous message aggregates that diagnose

20% of injected bugs, two outlier detection algorithms agree for a total of six

anomalous message aggregates that diagnose 26.6% of injected bugs.

This experiment shows that our engineered features are generic

to characterize anomalies such that multiple outlier detection al-

gorithms agree on a large number of anomalies that diagnose mul-

tiple bugs. This observation motivated us to use a comprehensive

anomaly score to rank message aggregates. We explain our compre-

hensive anomaly score calculation in Section 5.6.6.
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Table 5.3: Diagnosis statistics for different outlier detection algorithms for
different case studies using OpenSPARC T2 SoC [156, 157]. LkNN: k-
Nearest Neighbor using largest distance as metric [175, 176]. MukNN: k-
Nearest Neighbor using mean distance as a metric [175, 176]. OCSVM: One-
class Support Vector Machine [173]. D: Fraction of injected bugs diagnosed
by an outlier detection algorithm. fp: Total number of false positive message
sequences (no more than 37% anomalous message sequences). P: Precision
of an outlier detection algorithm. OS: Overall diagnosis statistics for each
of the outlier detection algorithm per debugging case study.

Case LkNN MukNN OCSVM
Study D tp fp P D tp fp P D tp fp P

1 0.25 18 4 0.82 0.75 9 4 0.69 0.75 20 6 0.77

2 0.34 24 9 0.73 0.34 12 8 0.6 0.34 24 9 0.73

3 0.67 10 3 0.77 0.67 10 3 0.77 0.34 6 4 0.6

4 0.34 9 3 0.75 0.67 9 3 0.75 0.67 8 2 0.8

5 1.0 9 3 0.75 1.0 9 3 0.75 1.0 8 2 0.8

OS 0.47 14 4.4 0.76 0.67 9.8 4.2 0.70 0.67 13.2 4.6 0.74

5.6.4 Comparison of precision of different outlier detection
algorithms in detecting outlier message sequences

In this experiment, we compare the precision (c.f., Definition 16), recall

(c.f., Definition 17), and accuracy (c.f., Definition 18) of each of the out-

lier detection algorithms in diagnosing anomalous messages sequences per

debugging case study. In Table 5.2 and Table 5.3, we show the fraction

of injected bugs diagnosed, and the number of true positive and false posi-

tive candidate anomalous message sequences identified for each of the outlier

detection algorithm per debugging case study. In Table 5.4, we show the frac-

tion of total number of injected bugs diagnosed, total number of true positive,

false positive, true negative, and false negative candidate anomalous message

sequences identified across all of the outlier detection algorithms per debug-

ging case study. For this analysis, we considered only the top 10% anomalous

message aggregates identified by each of the outlier detection algorithm per

debugging case study.

Our analysis shows that IForest, MukNN, and OCSVM consistently per-

formed better in anomalous message sequence diagnosis as compared to the

other three algorithms PCA, LOF, and LkNN. Each of the outlier detection

algorithm diagnosed up to 100% of injected bugs. IForest diagnosed on an

average 73% of injected bugs with a precision of up to 0.8 (average 0.69),
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Table 5.4: Overall statistics of automated debugging across all outlier detec-
tion algorithms across all case studies. D: Fraction of injected bugs detected.
P: Precision. R: Recall. A: Accuracy.

Case
D

Sequences
P R A

Study tp tn fp fn

1 0.75 20 2 6 54 0.769 0.27 0.25
2 0.67 29 2 11 24 0.725 0.54 0.45
3 0.67 10 2 3 22 0.769 0.32 0.28
4 1.0 20 0 6 22 0.769 0.48 0.42
5 1.0 9 1 3 4 0.75 0.69 0.56

MukNN diagnosed on an average 67% of injected bugs with a precision of

up to 0.77 (average 0.70), and OCSVM diagnosed on an average 67% of in-

jected bugs with a precision of up to 0.8 (average 0.74) per debugging case

study. On the other hand, PCA diagnosed on an average average 40% of

injected bugs with a precision of up to 0.8 (average 0.69), LOF diagnosed on

an average 47% of injected bugs with a precision of up to 1.0 (average 0.81),

and LkNN diagnosed on an average 47% of injected bugs with a precision of

up to 0.82 (average 0.76) per debugging case study. Further analysis shows

(c.f., Table 5.4) our automated diagnosis technique was able to detect up

to 100% (average 81.8%) of injected bugs with a precision of up to 0.769

(average 0.756) per debugging case study.

In Table 5.4, we also show the recall and the accuracy metric per debugging

case study. Our diagnosis methodology achieved up to 0.69 (average 0.46)

recall and up to 0.56 (average 0.39) accuracy. We note that in Table 5.4 the

value of recall and accuracy are relatively small. This is due to the fact that

we are only considering the top 10% anomalous message aggregates for this

analysis. Consequently, the tp in the numerator is calculated from those top

10% anomalous message aggregates whereas fn and tn are calculated based

on the entire set of message aggregates. Consequently, the numerators are

much smaller than the denominators (c.f., Definition 17 and Definition 18)

which results in a small value of recall and accuracy.

This experiment shows that our automated diagnosis method-

ology using engineered features is effective in identifying complex

and subtle bugs with high precision.
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Table 5.5: Summary of diagnosis improvements achieved using automated
diagnosis technique as compared to manual debugging. N: Number of can-
didate anomalous message sequences identified. T: Time taken to identify a
candidate anomalous message sequence. D: Improvement in terms of number
of additional bugs diagnosed as a fraction of injected bugs. t: Improvement
in diagnosis time. �: Not available.

Case Bug Manual Automated Improvement
Study ID N T N T D t

(Hrs) (Secs)

1

1 1 8 18
61.4

50% 469.1×28 � �
2

29 � �
36 � � � �

2
17 � � 5

58.5
33.3% 184.61×18 1 3 24

25 � � � �

3
5 � � � �

33.3%
847.05×8 1 14 6

59.5
37 � � 4

4
5 1 6 14

57.5 66.7% 375.65×8 � � 3
37 � � 3

5
24 � � 3

48.5 50% 445.36×
39 1 6 6

5.6.5 Improvement in diagnosis over manual debugging

In this experiment, we analyze the improvement in diagnosis in terms of

number of injected bugs diagnosed and diagnosis time over manual debug-

ging. Table 5.5 (column 7 and column 8) summarizes the diagnosis improve-

ment. We were able to diagnose up to 66.7% more injected bugs (average

46.67%) with up to 847× (average 464.35×) less diagnosis time.

This experiment shows that our automated bug diagnosis is ef-

fective and expedites debugging.

5.6.6 Comprehensive ranking of outlier message sequences

In Section 5.6.4, our experimental results showed that IForest, OCSVM, and

MukNN are the three most effective outlier detection algorithms among six

for diagnosing useful anomalous message sequences that can help in debug-
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ging. Each of the IForest, OCSVM, and MukNN (c.f., Section 5.3) detect

anomalous message aggregates based on a different perspective. IForest se-

lects an anomalous message aggregate based on shorter path lengths created

by random selection of a feature and recursive partitioning of the feature data.

OCSVM selects an anomalous message aggregate by solving an optimization

problem to find a maximal margin hyperplane that best separates anomalous

message aggregates. MukNN (i.e., k-NN with mean distance as metric) se-

lects an anomalous message aggregate based on a aggregate’s local density

and the distance to its kth nearest neighbor.

Consequently, to incorporate these different perspectives into our diagno-

sis methodology, we use a heuristic combination of outlier scores from each

of the above three algorithms for each of the message aggregate. We found

that a linear combination of outlier scores of a message aggregate is in closer

agreement with our empirical findings than relying on outlier score of a mes-

sage aggregate from each of the individual algorithms. Let x be a message

aggregate, Ano(x) be the comprehensive outlier score of x, and IForest(x),

OCSVM(x), and MukNN(x) be the outlier score of x using the IForest,

OCSVM, and MukNN algorithm respectively. We define Ano(x) as follows.

Ano(x) =
IForest(x) +OCSVM(x) +MukNN(x)

3
(5.1)

In our experiments, we rank anomalous message aggregates based on the

comprehensive outlier score defined by Equation 5.1.

5.7 Qualitative debugging case study on effectiveness

of our diagnosis methodology

It is illuminating to understand a case study to appreciate the effectiveness

of our automated bug diagnosis methodology in the debugging process.

Symptom: In this experiment we reused traced messages from Table 4.9.

The simulation failed with an error message FAIL: Bad Trap.

Issues with manual debugging: The manual debugging using traced mes-

sages has several drawbacks. Firstly, it relies on an in-depth understanding

of the flows and observed messages e.g., siincu and piowcrd to interpret

design functionality. This itself is a manually intensive task. Secondly, it
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missed diagnosing multiple bugs. In the manual debug of Section 4.7, we

were only able to detect one among four injected bugs. This is because a)

manually analyzing a large number of message sequences is tedious and er-

ror prone and b) it is extremely difficult to identify infrequent and deviant

message sequences that are symptomatic of one or more bugs.

In comparison, a diagnosis technique such as the proposed one (c.f., Sec-

tion 5.4) can automatically learn and distinguish the correct design behavior

from buggy design behavior.

Debug with bug diagnosis methodology: We apply our bug diagnosis

methodology on the same set of trace messages as before. The methodol-

ogy identified five anomalous message aggregates containing a total of 26

unique message sequences. We found 20 true positive anomalous message

sequences that are symptomatic of different bugs that we injected in the de-

sign. Among these 20 anomalous message sequences, 18 message sequences

were symptomatic of the bug that we identified manually. The remaining

two message sequences were symptomatic of the other two injected bugs.

Clearly, while debugging manually, we were unable to detect the later

two bugs because i) they were more subtle and ii) the symptomatic mes-

sage sequences were extremely infrequent. Interestingly, the manual debug

took approximately eight hours to diagnose one symptomatic message se-

quence. In comparison, the automated bug diagnosis methodology took only

approximately 62 seconds (an improvement of 469×) to pre-process the trace

messages and to diagnose candidate anomalous message sequences using dif-

ferent outlier detection algorithms. Additionally, the diagnosis method was

able to diagnose candidate anomalous message sequences for two more bugs,

an improvement of 50% over manual debugging (c.f., Table 5.5).

This case study shows that our bug diagnosis methodology au-

tomates and expedites tedious and error-prone manual debugging

process of post-silicon failures.

5.8 Conclusion

We have presented an automated post-silicon bug diagnosis methodology for

SoC use-case failures. Our solution uses the power of machine learning and

feature engineering to automatically learn the buggy design behavior and
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the normal design behavior from the trace data by analyzing intrinsic data

feature without requiring a prior knowledge of the design. Our proposed

diagnosis solution is highly effective and can diagnose many more bugs at

a fraction of time with high precision as compared to manual debugging.

We demonstrate the effectiveness of out proposed diagnosis solution using

real-world debugging case studies on the OpenSPARC T2 SoC.
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CHAPTER 6

ASSERTION RANKING USING RTL
SOURCE CODE ANALYSIS

6.1 Introduction

Assertions are used in a wide spectrum of validation acitivities e.g., formal

verification, runtime monitoring, dynamic validation, coverage analysis, to

validate hardware designs throughout their life cycle. Assertion-based veri-

fication heavily depends on the quality of the assertions used. Writing good

quality assertions is a very hard problem [6, 7, 45, 46, 47, 48, 49, 50, 51]. Con-

sequently, in industry, manual inspection is required to identify high-quality

assertions for verification.

In this chapter, we present a comprehensive assertion-ranking methodology

(c.f., Problem PR4 of Figure 1.10) to quantify the “goodness” of an assertion

using RTL source code analysis.

One can see intuitively that any behavior in a design can be considered

important, if that behavior affects the visible output of the design. The more

subtly it affects the output behavior, the more important it is. One way to

quantify and compute this functional notion of importance, in terms of design

structure, is to find variables that are highly “connected” to other important

variables. Such a recursive definition would allow for iterative computation

across the variable dependency graph. An important assertion for a target

variable would then be one that comprises many important design variables,

and captures the design path(s) that are the most important to that target

(output).

However, too many important design variables in an assertion hinder its

understandability and diminish its practical usability. The anticipated use

cases (e.g., design understanding, validation, and debugging) of our ranking

method tend to have a human in the loop who needs to comprehend the

design behavior captured by an assertion. In order to balance the importance
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with understandability, we calculate the complexity of an assertion. The

resulting assertion complexity is an attempt to quantify and compute the

human comprehensibility of an assertion.

Intuitively, we consider the complexity of an assertion to be the number of

logic levels traversed from the assignment of the variable in the consequent of

an assertion to the reference of the variables in its antecedent. Our reasoning

is that understandability decreases with traversal of more logic levels when

source code is being inspected.

Our approach ranks important assertions that are easily understandable.

We compute ranks for propositional as well as temporal assertions.

Defining a ranking scheme for assertions is an inherently subjective task,

because of the versatility and varying uses of assertions. In this work, we

seek to identify diverse perspectives of a design, and develop a comprehensive

ranking methodology that includes these perspectives. Assertion coverage1

or the behavior covered by an assertion over the RTL source code provides

a different perspective on the importance and complexity of an assertion.

Recent work [29] provides a method for computing assertion statement cov-

erage. Although the intention there is limited to finding statement coverage

in the scope (between the antecedent and consequent) of an assertion, we

repurpose statement coverage as a way to provide a “goodness” metric for

assertions. We first use that coverage-based ranking as a baseline against

which to compare our importance / complexity-based ranking, and then we

incorporate it into a comprehensive ranking for assertions.

Our empirical comparison between importance / complexity rankings and

coverage-based rankings yielded the following observations. In terms of com-

putational efficiency, coverage-based ranking is much less efficient in ranking

a set of assertions, needing up to 4366× more runtime than importance /

complexity-based ranking.

We compared bug detection and localization of top-ranked assertions from

the importance / complexity-based ranking and the coverage-based ranking.

Our analysis shows that top-ranked assertions from importance/complexity-

based ranking detect up to 1.5× more bugs per assertion than the top-ranked

1This is distinct from the assertion coverage used in commercial tools as a simulation
metric. That metric measures how many assertions are stimulated by a test suite and
measures the goodness of the test suite. In this work, we focus on the question of how
much behavior is covered by a set of properties.
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assertions from the coverage-based ranking.

We also compared overlaps in ranks by using the two kinds of rankings for

a set of assertions. We found that when the top 20% and bottom 20% of

assertions are combined, on average, ranks of up to 57.26% assertions agree.

This shows that there is some partial agreement between the rankings even

though they capture different perspectives. That discovery motivated us

to explore a comprehensive ranking scheme for assertions that incorporates

coverage along with importance and complexity.

While rank aggregation [182, 183, 184] was an obvious choice for combin-

ing the two rankings, the disparities between the ranks are too wide to permit

use of that approach. We present a heuristic combination of importance /

complexity-based ranking and coverage-based ranking to generate a compre-

hensive ranking for a set of assertions. We find that a parameterized linear

combination of importance / complexity-based ranking and coverage-based

ranking is in close agreement with our empirical findings. In our analysis, we

chose the correlation coefficient between the importance / complexity-based

ranking and the coverage-based ranking as the parameter.

Our contributions are as follows.

• We propose a systematic technique to provide a quantitative estimate

of the “goodness” of an assertion and means to compare the quality

of a set of assertions. Our technique can quantify “goodness” of both

manual and automatic RTL assertions.

• We define assertion importance and assertion complexity metrics to

quantify the “goodness” of an assertion. We also develop an algorithm

to compute those metrics.

• We also show that importance / complexity-based ranking is consistent

with respect to the design functionality. We establish with empirical ev-

idence that top-ranked assertions from importance / complexity-based

ranking are valuable for design understanding, localization, and debug-

ging.

• We demonstrate that the computational efficiency of importance /

complexity-based ranking is several orders of magnitude greater than

that of the only known coverage-based ranking algorithm.
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• Finally, we propose a comprehensive ranking for assertions to combine

the diverse perspectives of the importance / complexity-based ranking

and the coverage-based ranking.

6.1.1 Use cases of assertion ranking

The use cases for our assertion-ranking approach comprise situations where

assertions are used and need to be examined for some purpose by a human

in the loop. Automatically generated assertions [39, 41, 42, 65] are often

numerous and more assertions may be generated than can practically be

examined by a human. Ranking of the most important assertions is essential

if this technology is to be practicable. We further elaborate the use cases

here.

An interesting use case for assertion ranking is debugging. Given that

debugging effort is a “pain point,” assertion ranking can be used to save and

prioritize debugging efforts. Our case studies show that debugging with a

top-ranked assertion is straightforward, whereas debugging with low-ranked

assertions is convoluted and requires complex reasoning (c.f., Section 6.4).

Debugging effort is greater when, from the point when a bug’s symptom is

observed, multiple levels of logic have to be navigated to find the root cause.

Our notion of complexity captures just that. In debugging, it translates into

navigating much less logic, while simultaneously covering the most important

ground.

In formal verification, one of the factors influencing the efficiency of the

formal verifier is the number of properties and the size of each property. It

is important that the properties being verified be succinct, have high behav-

ioral coverage, and do not have very high temporal depth. These qualities

are ensured by the importance, complexity, and coverage metrics that we

measure in our comprehensive ranking. Further, if the formal verifier runs

into a capacity issue, the ranked assertion list can be used as a guideline for

deciding which assertions to prioritize for formal verification.

In simulation, a large number of assertions result in slowing of the process.

In emulation, assertions need to be synthesized along with the design in a

small part of the die area. Top-ranked assertions from our ranking can pro-

duce high-quality assertions that can benefit simulation as well as emulation
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performance.

In general, the proposed ranking technique can inform designers of the

quality of the assertions that they have written. Our technique can provide

hints to the designers about the important behavior that they might be miss-

ing. Further, designers can also get an understanding of what variables and

statements in the design have and have not been covered, thereby providing

insight into the behavior that remains to be checked.

6.2 Preliminaries

6.2.1 Assertions

Definition 19 An assertion is a linear temporal logic (LTL) formula of

the form P = G(A→ C), where A = A0 ∧X (A1)∧XX (A2)∧ . . .∧Xm(Am)

and C = X n(Cn) and n ≥ m. Here, each Ai is a conjunction [149] of

a proposition defined in terms of the input and/or register variables of the

Verilog design, and C is a proposition defined in terms of a given register

and/or output variable. The proposition in C is defined as a target vari-

able. X n(n ≥ 0) is equal to a delay by n cycles. Each proposition in each of

the Ai or in C is a signal-value pair where the value can be either 0 or 1.

A0: (req2 == 1 ∧ gnt == 1) X (req1 == 1) → (gnt1 == 1) is an

assertion for the two-port arbiter of Figure 3.1. The proposition gnt1 in the

consequent is the target variable.

Definition 20 A temporal variable is defined as a design variable v whose

value assignments span across multiple clock cycles with respect to the cur-

rent clock cycle. Let v−k denotes v at k clock cycles in the past relative to the

current clock cycle.2 Our methodology treats each such variable as a unique

variable, e.g., v−1 6= v. If there is a loop in the global dependency graph

that involves v, then that loop will depend on an infinite number of tempo-

ral variables. Consequently, our methodology constructs a relative variable

dependency graph for v, transitively expressing its dependencies within a

bounded number of clock cycles.

2We use v−k or [k]v interchangeably to denote v at k clock cycles in the past relative
to the current clock cycle.
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{S1, S2, S4, S5, S6, S9} 

are covered

Initialization Execution Backtracking

Figure 6.1: Three different phases of correctness-based statement coverage
algorithm [29]. p1, p2, . . ., pn are different design paths. S1, S2, S4, S5, S6,
and S9 are the design statements that are covered by the assertion P.

In Figure 3.1, gnt is a temporal variable, since its value assignments span

multiple cycles at line 6 and line 8.

6.2.2 Statement coverage analysis

In [29] the authors have proposed a correctness-based statement coverage

algorithm for an assertion P: G(A → C). For a given Verilog program M
and a non-vacuously true assertion P in that Verilog program, a statement S

in the Verilog program is said to be covered by P if the following conditions

hold true: i) execution of S depends on some propositional term(s) in the

antecedent A, and ii) execution of S or any other statement whose execution

is dependent on S makes the consequent C evaluate to true.

The approach of [29] contained three steps: initialization, execution, and

backtracking (c.f., Figure 6.1). In the initialization phase, design variables

are assigned values corresponding to the antecedent being true, and all other

design variables are randomized. In the execution phase, the control data

flow graph (CDFG) of the design is executed, and the statements that are

executed until the consequent is evaluated are recorded. In the backtracking

phase, starting from the point where the consequent was evaluated, concrete

executions that were recorded before are analyzed. The set of statements
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identified as dependent on the antecedent (from the concrete execution) are

reported as covered. The three phases are repeated for a user-specified num-

ber of times to simulate more design execution paths. The final set of covered

statements are the set union of the statements covered in each iteration.

6.2.3 Statement coverage-based assertion ranking (SRank)

We repurpose the algorithm of [29] (c.f., Section 6.2.2 and Figure 6.1) to rank

a set of assertions for a Verilog program based on the statement coverage of

an assertion.

Definition 21 The statement-coverage-based rank score (SRank) of

an assertion P is defined as the number of design statements that are covered

for the non-vacuous truth of P in a Verilog program expressed as a fraction

of the total number of design statements.

Let N be the total number of statements of a Verilog program, includ-

ing conditional statements, blocking and non-blocking statements, and as-

sign statements. Let n be the total number of statements covered by an

assertion P. We compute the statement coverage-based rank score of P as

SRank(P) = n/N . The SRank quantifies the statement coverage per asser-

tion and induces a rank ordering among a set of assertions. We compare the

importance/complexity-based assertion ranking to that of SRank.

6.3 Assertion ranking methodology (IRank)

6.3.1 Intuition of assertion importance and assertion
complexity

In this section, we discuss the intuition behind importance / complexity-

based ranking to quantify the “goodness” of a set of assertions by using a

systematic analysis of the RTL source code. We focus our ranking method

on ranking of assertions with a single target variable. The ranking method

targets design verification/validation, design understanding, and debugging

as the potential use cases of the ranked assertions. Consequently, the rank-

ing method ranks assertions based on their characterization of the design
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functionality. To quantify the characterization of design functionality, we

calculate i) assertion importance and ii) assertion complexity. Our ranking

method considers both assertion importance and assertion complexity in a

balanced way.

Assertion importance: A design behavior is important if it affects the

visible outputs of a design. The design behavior is considered to be more

important if it affects output behaviors more subtly. One way to quantify

and compute the functional notion of importance in terms of design structure

is to find variables that are highly “connected” to other important variables.

In other words, a design variable is important if it is a part of many design

paths that capture important design behaviors. That recursive definition

of variable importance allows for an iterative computation across the vari-

able dependency graph (c.f., Section 3.2.3). An important assertion for a

target variable comprises many important design variables with respect to

the target, and captures the design path(s) that are most important to the

target.

Variable importance: To calculate assertion importance, we calculated

a global importance score of each of the design variables in an RTL by us-

ing Google’s PageRank [64, 153] (c.f., Section 3.2.1) algorithm. We applied

the PageRank algorithm on an RTL variable dependency graph (c.f., Sec-

tion 3.2.3). Intuitively, PageRank ranks dependency graph nodes with many

incoming edges and many outgoing edges higher than those with fewer such

edges.

Although the global importance score provides a global ranking of all the

variables in the design, it does not capture the specific relationship that

exists between the target variable and the variable(s) in the antecedent of

an assertion across different design paths. For example, consider assertions

C1: a → f and C2: b → f . Assume that the spatial distance between the

references of a and the assignment of f is three statements, and that between

the references of b and the assignment of f is one statement. In other words,

to understand the design behavior captured by C1, one needs to analyze three

design statements, whereas to understand the design behavior captured by

C2, one needs to analyze one design statement. Intuitively, one can see that

a in C1 should have a higher importance score than b in C2 with respect to f

as a captures more subtle behavior because of its higher spatial distance than
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b with respect to f . Now consider C1: a → f and C3: a → XX f . While

both C1 and C3 refer to a in their antecedents, C3 refers to a two cycles

away from f , as C3 can be rewritten as a−2 → f (c.f., Section 6.2.1). That

implies that to understand the design behavior captured by C3, one needs

to reason over two clock cycles, whereas to understand the design behavior

captured by C1, one needs to reason over one clock cycle. Intuitively, we see

that a−2 in C3 should have higher importance than a in C1, as a−2 captures

more subtle behavior because of its higher temporal distance than a with

respect to f . A variable with higher temporal and spatial distance affects

the visible output behavior of the target variable convolutedly. Consequently,

the captured behavior is subtle and directly invisible from the source code. A

higher importance score for a temporally and spatially distant variable with

respect to the target variable quantifies such behaviors.

We compute a relative importance score Ir(vi, vt) that captures how im-

portant a variable vi is with respect to the target variable vt of an assertion

P. The relative importance score emphasizes i) the temporal distance and

the spatial distance between a variable vi in the antecedent and the target

variable vt, and ii) the importance of the covered execution paths between

the references to the given variable vi in the antecedent and assignments to

the target variable vt of an assertion. A variable’s relative importance score

is transitively dependent on the relative importance scores of the variables

it assigns. We use relative importance scores of the variables to calculate an

assertion’s importance score. An assertion with a high importance score has

high temporal and spatial distance between the target variable and the vari-

ables in the antecedent and covers the design path(s) that are most important

to the target.

Definition 22 The assertion importance of an assertion P for a target

variable vt is defined as the sum of the relative importance scores Ir of the

variables in the antecedent of P with respect to the vt. It is calculated as

I(P) =
∑

vi∈Va
Ir(vi, vt), where Va is the set of variables in the antecedent

of P.

It is desirable to construct high-importance assertions for design verifi-

cation/validation and debugging. A high-importance assertion is composed

of a large number of important design variables with respect to the target
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variable. Assertions that use such variables usually span a large number of

design statements and a large number of clock cycles, and typically have

many propositions in their antecedent that hinder its understandability and

diminishes its practical usability. Note that the targeted use cases (e.g., de-

sign verification/validation, understanding, and debugging) of our ranking

method always have a human-in-the-loop who needs to comprehend the de-

sign behavior that is captured by an assertion for effective localization and

debugging. In order to balance the importance and the understandability of

the design behavior that is captured by an assertion, we calculate assertion

complexity.

Assertion complexity: The assertion complexity attempts to quantify and

compute the human comprehensibility of an assertion. To quantify the com-

plexity of an assertion, we need to quantify the complexity of each of the

variables in the antecedent of an assertion with respect to the target vari-

able. We argue that the understandability decreases as more and more lines

of source code need to be investigated to understand how a variable affects

the output behavior of the target variable. A variable is highly complex if it

requires investigation of a large fraction of Verilog source code to understand

its effect on the output behavior. An assertion is complex if it is composed

of many complex design variables with respect to the target variable. The

presence of complex design variables in an assertion enables it to capture

complex design behaviors.

Variable complexity: To calculate assertion complexity, we calculate the

relative complexity score Cr(vi, vt) of each of the variables vi in the antecedent

of an assertion with respect to the target variable vt. The relative complexity

score captures the understandability of the dependencies between the target

variable and the variable(s) in the antecedent. The relative complexity score

emphasizes i) the temporal distance and the spatial distance between a vari-

able in the antecedent and the target variable, and ii) the understandability of

the execution paths between references to a given variable in the antecedent

and the assignments to the target variable in the consequent. Consider C3,

which can be rewritten as a → X 2f (c.f., Section 6.2.1). A validator would

need to search transitively for all assignments to f for two clock cycles until

the validator finds an assignment in which a is referenced. The complexity

score computation of a variable is based on the following tasks: i) analysis of
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each variable in a large expression, and ii) development of an understanding

of the relationship between spatially and temporally separated variables. We

use the relative complexity scores of the variables to calculate an assertion’s

complexity score. An assertion with a high complexity score has high tem-

poral and spatial distance between the target variable and the variables in

the antecedent and covers complex design path(s) between the satisfaction

of its antecedent and the truth of its consequent.

Definition 23 The assertion complexity of an assertion P for a target

variable vt is defined as the sum of the relative complexity scores Cr of the

variables in the antecedent of P with respect to the vt. It is calculated as

C(P) =
∑

vi∈Va
Cr(vi, vt), where Va is the set of variables in the antecedent

of P. The C(P) considers all variables in the antecedent of an assertion

equally irrespective of their relation to one another via operators. Each vari-

able contributes its relative complexity score to an assertion for its every

appearance in the antecedent.

Ranking: An assertion’s rank estimates the importance and the under-

standability of the design behavior that it captures. In order to facilitate de-

sign understanding, validation, and debugging, our proposed ranking method

ranks an assertion higher that has a balanced composition of important and

complex design variables with respect to the target variable. In other words,

the ranking method ranks an assertion higher that has high importance and

is also easy to comprehend.

6.3.2 Calculation of importance and complexity of the
variables in an assertion

Global importance score: We use the method of Section 3.4.2 to compute

global importance score of each of the variable in the RTL design. Let Ig(v)

denotes the global importance score of v.

Relative importance and complexity score: Algorithm 2 details the rel-

ative importance and complexity score calculation for each variable on which

vt depends within a bounded number of temporal frames kmax. The algorithm

constructs the relative dependency graph Gr = (Vr, Er). It requires inputs v,

k, and vt where v denotes the current variable in the depth-first construction
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of Gr, and k denotes the current temporal index. Further, let kmax denote

the maximum temporal length of Gr. We quantify the complexity of a design

variable as the number of transitive traversals of the Verilog source code that

needs to be made from the assignment of the target variable to the reference

of the variable under consideration. Let the function dependencies(v) re-

turns the set of variables on which v depends within one temporal frame; let

temporal(v) be true if assignments to v span multiple temporal frames; let

expressions(v) returns the set of expressions that defines v within one tem-

poral frame; let sensitivities(v) returns the set of expressions that reference

v; and let size(X) returns the number of variables used in expression X.

Algorithm 2 Relative variable importance and complexity

1: procedure calc imp complx(v, k, vt)
2: if k < kmax then
3: V ← dependencies(v)
4: X ← expressions(v)
5: for all vi ∈ V do
6: ir ← Ig(vi) + Ir(v, vt)
7: S ← sensitivities(v)
8: Cr ← 0
9: for all Xi ∈ X ∩ S do

10: cr ← cr + size(Xi)
11: end for
12: Cr ← Cr + cv
13: Vr ← Vr ∪ (vi, ir, Cr)
14: Er ← Er ∪ (vi, v)
15: end for
16: for all vi ∈ V do
17: if temporal(vi) then
18: calc imp complx(vi, k + 1, vt)
19: else
20: calc imp complx(vi, k, vt)
21: end if
22: end for
23: end if

Algorithm 2 checks whether k < kmax and terminates if it is not. For

each variable on which v depends, the algorithm adds a new node and edge

to Gr. The algorithm computes the relative importance score ir of v−ki by

summing the global importance score of vi and relative importance score of

v with respect to vt. It also computes the relative complexity score of v−ki
by summing the sizes of the expressions in X ∩ S that contains expressions
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Table 6.1: Example assertions for the two-port arbiter of Figure 3.1.

ID Assertions

a0 (req2 == 1 ∧ gnt == 1) ##1 (req1 == 1) → (gnt1 == 1)
a1 (req1 == 1 ∧ req2 == 0) → (gnt1 == 1)

gnt1

Ig = 0.22

rst

Ig = 0.10

gnt_

Ig = 0.26

gnt2

Ig = 0.22

req1

Ig = 0.10

req2

Ig = 0.10

1

2

2

1

2

2
2

2

clk

Ig = 0.10

7

(a)

gnt1

Ir = 0.22

Cr = 0.0

req1

Ir = 0.49

Cr=3.0

req2

Ir = 0.29

Cr =2.0

gnt_

Ir = 0.63

Cr = 2.0

[1]gnt1

Ir = 0.83

Cr = 3.0

[1]rst

Ir = 1.49

Cr = 2.0

[1]req2

Ir = 0.92, 

Cr = 5.0

[1]req1

Ir = 1.75

Cr = 6.0

[1]gnt_

Ir = 1.89

Cr = 5.0

(b)

Figure 6.2: Variable dependency graphs (VDG) (same as Figure 3.2)
for the two-port arbiter of Figure 3.1. We redraw the VDG
for ease of understanding. (a) shows the global VDG where V =
{req1, req2, gnt , gnt1, gnt2, clk, rst}. Ig is the global importance score of
a node. (b) shows the relative VDG for gnt1. Ir is the relative importance
of a node. Cr is the relative complexity of a node.

that both define v and use vi. Next, for each variable vi on which v depends,

the algorithm increases k if vi is temporal and recurses.

6.3.3 Assertion ranking based on assertion importance and
assertion complexity

We rank a set of assertions by using their importance and complexity scores

as defined in Section 6.3.1 (c.f., Definition 22 and Definition 23). The rank

score of an assertion P is defined as IRank(P) = I(P)/C(P). Our ranking

ensures that an assertion that captures most important design behavior(s)

for a target (high assertion importance score) and easy to comprehend (low

assertion complexity score), is ranked higher.
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6.3.4 Example of IRank- and SRank-based assertion rankings

We use two assertions shown in Table 6.1 for the two-port arbiter of Fig-

ure 3.1. a0 captures a non-trivial temporal property, whereas a1 captures a

trivial combinational property. Hence, we expect both the importance and

complexity scores of a0 to be higher than those of a1.

IRank calculation: Figure 6.2a shows the global VDG of the two-port

arbiter of Figure 3.1, labeled with variable names, edge weights, and global

importance scores (c.f., Section 3.2.1). Figure 6.2b shows the relative VDG

for gnt1 as constructed by Algorithm 2. Since a0 and a1 are each two cycles

long, kmax = 2. Both algorithms begin with v = gnt1, k = 0, and vt = gnt1.

Since k < kmax, both algorithms continue.

Line 3 in Algorithm 2 initializes the set V to the variables on which gnt1

depends (V = {req1, req2, gnt }), and line 4 initializes the set X to the

expressions on which gnt1 depends (X = {gnt , {req1 &¬req2}}, req1}).
Line 7 initializes the set S to the expressions that reference req1, (S =

{req1 & ¬req2, req1}). Lines 13 –14 add a node for each of the variables in

V to the relative dependency graph.

In Algorithm 2, line 6 computes the relative importance score of req1 as

Ir(req1, gnt1) = 2 ∗ 0.20 + 0.09 = 0.49. Since gnt1 uses req1 in two assign-

ments, gnt1 contributes its relative importance score twice to the relative

importance score of req1. Line 9 computes X ∩ S = S, and lines 9 –12 com-

pute the relative complexity score of req1 as Cr(req1, gnt1) = 2 + 1 = 3. Al-

gorithm 2 recurses in lines 16 –21. Since req1 and req2 are inputs, they do

not depend on any variables. Therefore, the algorithm terminates in each

of these recursive calls. When Algorithm 2 recurses on gnt , it increments

k, since gnt is temporal. Algorithm 2 terminates when k ≥ kmax or when

V = ∅.
The importance score for a0 is I(a0) = 0.92 + 1.89 + 0.49 = 3.30 and

for a1 is I(a1) = 0.72. The complexity score for a0 is C(a0) = 5.00 + 5.00

+ 3.00 = 13.00, and for a1 is C(a1) = 5.00. Finally, the rank for a0 is

IRank(a0) = I(a0)/C(a0) = 0.254 and for a1 is IRank(a1) = I(a1)/C(a1)

= 0.144.

SRank calculation: We calculate SRank for a0 and a1 according to the

modified statement-coverage-based algorithm of Section 6.2.3. Since a0 is

temporal, according to the algorithm in [29], randomization of rst in the
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Table 6.2: Manually written assertions for pci master32 sm module for the
output pci frame en out.

ID Assertions IRank

b1 (cur state[3] == 1)##1(rdy in == 0) →
(pci frame en out == 0)

1

b2 (rdy in == 0)##1(pci frame out in ==
1&pci trdy in == 0&rdy in == 0) →
(pci frame en out == 0)

2

first cycle followed by a randomization of rst and gnt in the second cycle

will cover S1 –S9. Since a1 is combinational, the randomization of gnt will

cover S5 –S10. Figure 3.1 has nine non-trivial statements; hence SRank(a0)

= 9/9 = 1.0 and SRank(a1) = 6/9 = 0.66.

6.4 Case study of ranked assertions as an aid in

debugging

In this section we show that a ranked list of assertions can aid the debugging

process. We wrote two assertions on the Peripheral Component Interconnect

(PCI) [185] bridge master state machine for the pci frame en out, as shown

in Table 6.2. We ranked them using our assertion ranking methodology. The

buggy PCI master state machine code is shown in Figure 6.3. We simulated

the buggy PCI code along with the assertions b1 and b2, and both of the

assertions failed.

6.4.1 Functionality of pci frame en out

pci frame en out is the enable signal for the output pci frame out.

pci frame out signals that the master state machine is transferring data

on the bus. During a transfer, the signal pci frame en out should remain

enabled unless a master abort occurs.
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1 module pci_master32_sm(input clk_in,

2 reset_in, pci_gnt_in, pci_frame_in,

3 pci_frame_out_in, pci_irdy_in,

4 pci_trdy_in, pci_stop_in, req_in, rdy_in,

5 output pci_frame_out, pci_frame_en_out);

6 reg sm_idle, sm_address, sm_data_phases,

7 sm_turn_arround;

8 reg [3:0] cur_state, next_state;

9

10 wire ch_state_slow = sm_address ||

11 sm_turn_arround || sm_data_phases &&

12 (pci_frame_out_in && mabort1 || mabort2);

13

14 wire ch_state_med = ch_state_slow ||

15 sm_idle && u_have_pci_bus

16 && req_in && rdy_in;

17

18 wire change_state = ch_state_med ||

19 sm_data_phases &&

20 (~(pci_trdy_in && pci_stop_in));

21

22 wire u_dont_have_pci_bus = pci_gnt_in

23 || ~pci_frame_in || ~pci_irdy_in;

(a)

1 wire u_have_pci_bus = ~pci_gnt_in &&

2 pci_frame_in && pci_irdy_in;

3

4 wire frame_en_slow = (sm_idle &&

5 u_have_pci_bus && req_in || rdy_in)

6 || sm_address || (sm_data_phases

7 && ~pci_frame_out_in);

8

9 wire frame_en_keep = sm_data_phases

10 && pci_frame_out_in && ~mabort1

11 && ~mabort2;

12

13 assign pci_frame_en_out =

14 frame_en_slow || frame_en_keep &&

15 pci_stop_in && pci_trdy_in;

16

17 always @ (posedge reset_in or

18 posedge clk_in)

19 if (reset_in)

20 cur_state <= S_IDLE;

21 else if (change_state)

22 cur_state <= next_state;

(b)
1 always @ (cur_state or do_write

2 or pci_frame_out_in)

3 begin

4 sm_idle = 1'b0 ;

5 sm_address = 1'b0 ;

6 sm_turn_arround = 1'b0 ;

7 case (cur_state)

8 S_IDLE:

9 begin

10 sm_idle = 1'b1 ;

11 next_state = S_ADDRESS ;

12 end

13 S_ADDRESS:

14 begin

15 sm_address = 1'b1 ;

16 next_state = S_TRANSFER ;

17 end

18 S_TA_END:

19 begin

20 sm_turn_arround = 1'b1 ;

21 next_state = S_IDLE ;

22 end

23 endcase

24 end

25 endmodule

(c)

Figure 6.3: A buggy implementation of the PCI bridge master state machine.
The state encodings are S IDLE = 4’h1, S ADDRESS = 4’h2, and S TA END

= 4’h8. A bug is injected at line 5 of (b) through mutation of the logical
and operator (&&) before rdy in to logical or operator (||).
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6.4.2 Debugging with assertion b1

Consider the first cycle of b1. The proposition cur state[3] == 1 indicates

that the state machine’s current state is S TA END. Line 21 of Figure 6.3b

shows that the state machine will change state if change state is asserted.

Since the state machine’s current state is S TA END, sm turn around

== 1, sm idle == 0, and sm address == 0. That implies that

ch state slow == 1 (line 10 of Figure 6.3a), ch state med == 1

(line 14 of Figure 6.3a), and, consequently, change state == 1 (line 18

of Figure 6.3a). In the next cycle, the current state of the state machine

is S IDLE which implies that sm turn around == 0, sm idle == 1,

and sm address == 0. The result is that frame en keep == 0 (line 9

of Figure 6.3b), which makes frame en keep && . . . == 0 (line 13 of Fig-

ure 6.3b). Consequently, b1 failed because frame en slow was asserted.

Investigation of line 4 of Figure 6.3b shows that frame en slow could only

be asserted if the first OR’ed expression equals 1 (as sm address == 0

and sm data phases == 0). As rdy in == 0 is set by the proposi-

tion of b1 in the second cycle (sm idle == 1, since the current state is

S IDLE, and u have pci bus and req in are asserted by primary inputs),

the signal frame en slow can be asserted only if rdy in is OR’ed instead

of AND’ed. The PCI specification says that if a slave device is not ready (as

indicated by rdy in), then the master state machine cannot transfer data.

Fixing of the logical OR by the logical AND will cause b1 to pass. In this

example, b1 is consistent with PCI specification and aids debugging by pro-

viding valuable hints. Without b1’s guidance, a debugging engineer would

not be able to identify a starting point for debugging.

6.4.3 Debugging with assertion b2

Consider the first cycle of b2 that has rdy in == 0. The expressions at line

14 of Figure 6.3a and at line 4 of Figure 6.3b cannot be evaluated definitively

via rdy in == 0 because of the unknown values of other propositions, such

as sm idle, sm address, and ch state slow. Hence, we start going

backwards for the assertion b2.

Consider the second cycle of b2. The proposition pci trdy in == 0

ensures that the second disjunctive term of the assign statement at line
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13 of Figure 6.3b is not asserted. The failure of b2 implies that the signal

pci frame en out == 1, which in turn implies that frame en slow

== 1. Since the proposition pci frame out in == 1, the third disjunc-

tive term of the expression at line 4 of Figure 6.3b is deasserted. Conse-

quently, frame en slow will be asserted if either sm address == 1

(i.e., the current state of the state machine in cycle 2 is S ADDRESS) or

sm idle == 1 (i.e., the current state of the state machine in cycle 2 is

S IDLE, as rdy in == 0 was set by the proposition in b2).

Case I: Assume that the current state of the state machine in cycle 2 is

S ADDRESS. Consequently, the state machine’s current state in the first

cycle of b2 is S IDLE. In the first cycle of b2, rdy in == 0 ensures that

change state == 0 (sm address == 0, sm data phases == 0, and

sm turn around == 0, which assigns ch state slow == 0, which, in

turn, assigns ch state med == 0). That implies that the state machine’s

current state in the second cycle cannot be S ADDRESS and therefore

pci frame en out cannot be asserted. That is a contradiction. Hence,

our assumption that S ADDRESS is the state machine’s current state in

cycle 2 is wrong.

Case II: Assume that the current state of the state machine in cycle 2 is

S IDLE. Consequently, the state machine’s current state in the first cycle

of b2 is S TA END, implying that sm turn around == 1. In the first

cycle of b2, sm turn around == 1 ensures that ch state slow == 1,

which, in turn, makes ch state med == 1 and change state == 1.

Therefore, the state transition from S TA END → S IDLE from cycle

1 to cycle 2 is valid. As rdy in == 0 is set by the proposition of b2

in the second cycle (sm idle == 1 since the current state is S IDLE,

and u have pci bus and req in are asserted by primary inputs), the sig-

nal frame en slow can be asserted only if rdy in is OR’ed instead of

AND’ed. The PCI specification says that if a slave device is not ready (as

indicated by rdy in), then the master state machine cannot transfer data.

Fixing of the logical OR by the logical AND causes b1 to pass.

Clearly, both b1 and b2 helped to debug the failure. Debugging with b2

is convoluted and required complex reasoning, whereas debugging with b1

is simpler and easy to reason about. Hence, one would prefer b1 to b2 for

debugging.
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Table 6.3: Details of different USB and PCI design modules. LOCs: lines of
executable Verilog code in each design module. NAA: number of automatic
assertions generated by GoldMine [41] for each design module.

Module name LOCs Target NAA
Variables

usbf idma 361 3 20

usbf pa 314 4 18

usbf pd 351 21 758

usbf pe 651 3 87

usbf wb 196 4 612

pci master32 sm 560 9 30

This case study underscores our claim that a ranked list of asser-

tions can improve the debugging process and can help to prioritize

the debugging effort.

6.5 Experimental setup

Design testbed: We used publicly available USB [154] and PCI [185] de-

signs from OpenCores to demonstrate our results. Table 6.3 details different

USB and PCI design modules. We created five different buggy designs of

usbf pd and one buggy design of usbf pa, which we analyzed as six different

debugging case studies. The injected bugs are detailed in Table 6.4. We

used constrained random testbenches written in SystemVerilog to simulate

the buggy designs. We have made the buggy designs and the testbenches

available on the web [186].

Assertions used: We used the GoldMine tool [41, 65] to mine assertions

for each of the target variables for each of the design modules in Table 6.3.

For the sake of completeness, we also used a few manually written assertions

for the usbf pe module, shown in Table 6.5.

Execution platform: All experiments on the USB and PCI design modules

were run on an Intel Xeon CPU E3-1240 8-core processor running at 3.4 GHz

with 16 GB RAM.

141



Table 6.4: Representative bugs injected in different USB design modules.
Bug Category: Functional implication of the bug.

Bug Module Injected Bug
ID Bug Detail Category

1

usbf pd

Wrong state machine transition Control

2
Wrong condition to send

acknowledgement
Control

3
Wrong payload packet ID

decoding
Data

4
Wrong latch enable for token

storage registers
Control

5
Wrong qualification of receiving

token from host
Control

6 usbf pa
Wrong state transition for

sending data packets
Data

Table 6.5: Manually written assertions for the usbf pemodule for the outputs
send token and rx dma en.

ID Assertions

m1 (pid SETUP & idma done & ¬abort)##1(state == IDLE) ⇒
(send token == 1)

m2 (csr[27 : 26] == 2′b01 & no buf0 dma)##1(state == IDLE) ⇒
(send token == 1)

m3 (¬csr[17])##1(to large == 1 & match == 1)##1(csr[27 :
26] == 2′b10 & state == IDLE)→ (rx dma en == 1)
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Figure 6.4: Graphs (a) and (b) show correlation analysis between assertion
importance and assertion complexity.
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Table 6.6: Runtime and maximum memory to rank assertions based on
importance and complexity (IRank) and to rank assertions based on the
correctness-based statement coverage of (SRank) [29]. To calculate the SRank
of each assertion, we did 100 iterations to achieve a stable set of covered state-
ments. T: runtime in seconds. Mem: peak memory usage in MB. N/A:
measurement not available to report.

Module name IRank SRank
T Mem T Mem

usbf idma 1.2298 832.53 5333.19 444.01

usbf pa 1.232172 832.28 295.87 227.19

usbf pe 1.355495 834.52 3307.50 236.63

usbf wb 1.233261 831.78 4145.22 465.12

usbf pd 1.247646 832.78 890.63 670.23

pci master32 sm 1.243567 832.53 3947.99 331.8

6.6 Experimental results

6.6.1 Similarity analysis between assertion importance and
assertion complexity

In this experiment, we determined whether assertion importance and asser-

tion complexity are two similar metrics, as implied by the similarity of their

calculations as shown in Section 6.3.2. To find any such similarity, we calcu-

lated the correlation between assertion importance and assertion complexity.

For this experiment, we used a total of 611 assertions from two different

USB design modules (usbf wb and usbf pd). In Figure 6.4a and Figure 6.4b

we show the correlations between the importance and complexity of those

611 assertions. For each such scatter plot, we calculated the Pearson rank

correlation coefficient ρ; it is shown in the scatter plot of Figure 6.4a and Fig-

ure 6.4b.

The experimental results show that assertion importance and

assertion complexity are very weakly correlated. This underscores

the point that despite the apparent similarity between assertion

importance and assertion complexity calculations, assertion impor-

tance and assertion complexity are not dual or similar metrics.
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6.6.2 Quantitative comparison between
importance/complexity-based ranking and
coverage-based ranking methods

In this section, we compare importance/complexity-based ranking (IRank)

and coverage-based ranking (SRank) methods i) to identify the benefits of

using each of the ranking methods to rank a set of assertions, and ii) to

quantify the overlapping in rankings for a set of assertions.

We compare IRank and SRank in terms of i) computational efficiency and

ii) effectiveness in debugging to identify the benefits of each of the ranking

methods. To quantify overlapping in rankings, we compare IRank and SRank

in terms of i) similarity between assertion importance/coverage-based rank-

ing and assertion complexity/coverage-based rankings and ii) agreement in

rankings for a set of assertions.

• Computational efficiency of IRank and SRank methods: In this

experiment, we compared the computational efficiencies of the IRank and

SRank methods in terms of runtime and peak memory usage when ranking

a set of assertions.

For this experiment we used five different USB design modules and one

PCI design module. Table 6.6 shows the runtime and peak memory usage

found during ranking of assertions using IRank and SRank, respectively. To

calculate the SRank of each assertion, 100 iterations were done to stabilize

the set of covered statements.

IRank has up to 3.6× (average 2.6×) more peak memory usage than SRank,

and SRank needed up to 4366× (average 2824.5×) more runtime for ranking

than IRank.

IRank incurs high memory usage since it needs to construct the global

variable dependency graph and relative variable dependency graph per target

variable (c.f., Algorithm 2) at the beginning of the ranking process. That is

a memory-intensive operation. On the other hand, SRank needs to construct

the CDFG of the complete RTL design only once at the beginning of the

ranking, and can store it in the main memory of the system. The CDFG can

be reused later for any subsequent design execution for ranking. That is a

cheaper operation.

Once the importance and complexity scores of all the design variables

on which a target variable depends (within a bounded number of temporal
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Figure 6.5: Cumulative mutation coverage of top-ranked assertions from
IRank and SRank.

Table 6.7: Bug detection statistics for mutants that were randomly injected
using top-ranked assertions from IRank. Mod: Module under consideration.
TMuts: Total number of randomly injected mutants. KMuts: Number
of mutants that caused one or more top-ranked assertion(s) to fail. PMut:
Percentage of mutants killed. M/m/A: Maximum, minimum, and average
numbers of assertions failed per injected mutant. Unq: Number of unique
assertions failed. M1: usbf pe, M2: usbf pd.

Mod KMuts/ PMut IRank SRank
TMuts M/m/A Unq M/m/A Unq

M1 138 / 142 97.18% 6 / 4 / 4.97 6 6/3/4.97 7
M2 78 / 83 93.97% 9 / 1 / 2 30 15/2/4.03 32

frames) have been calculated, those scores are reused to calculate importance

and complexity for all assertions for a given target variable. Since calculation

of assertion importance and complexity consists only of additions (c.f., Def-

inition 22 and Definition 23), IRank needs much less time to calculate rank

score and to rank a set of assertions. On the other hand, to calculate the

statement coverage of each assertion, SRank needs to initialize variables in

the CDFG based on the propositions in the antecedent of an assertion, ran-

domize the remaining free variable(s), execute the CDFG, and backtrack to

identify covered statements (c.f., Section 6.2.2 and Section 6.2.3). Those

are time-intensive computations. Hence, SRank needs much more time than

IRank to rank a set of assertions.

This experiment shows that IRank is a more computationally

efficient ranking method than SRank.

• Debugging effectiveness of top-ranked assertions by IRank and

SRank: In this experiment, we quantitatively compared bug detectability
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Table 6.8: Debugging statistics for our case studies that used top-ranked as-
sertions according to IRank and SRank. NAF: Number of assertions failed.
Loc: Number of design statements investigated. NA: Localization not avail-
able as no assertions failed.

Bug IRank Assertions SRank Assertions
ID NAF Loc NAF Loc

1 2 9 2 12

2 3 10 3 12

3 4 7 None NA

4 1 7 None NA

5 3 7 3 13

6 1 8 1 10

of the top-ranked assertions found by the IRank and SRank metrics.

For this experiment, we used two different USB design modules, namely

usbf pe and usbf pd. For each of the modules, we created two different sets

of buggy designs. For the first set of buggy designs, we randomly injected

one bug per buggy design by using an in-house Verilog code mutation en-

gine [187]. In the second set of buggy designs, we manually injected one

bug (c.f., Table 6.4) at a time per buggy design. The manually injected

bugs more closely resembled real-world human errors. We simulated each

of the buggy designs by using a constrained random testbench along with

top-ranked assertions from the IRank and SRank methods.

We observe (c.f., Figure 6.5 and Table 6.7) that as more and more top-

ranked assertions from IRank and SRank are included, the mutation coverage

increases monotonically. We were able to achieve up to 97.18% (average

95.75%) mutant coverage by using top-ranked assertions from IRank and

SRank. Further, to achieve similar mutant coverage, we needed up to 10

(average 8) more top-ranked assertions from SRank than from IRank. Please

note that our assertion ranking methodology is orthogonal to the assertion

generation methodology [41, 42]. The ranking methodology identifies a set

of assertions based on their “goodness.” Consequently, if the original set of

assertions fails to capture complete design behavior, the top-ranked assertions

will not be able to detect all bugs. For that reason, in our analysis, we were

not able to achieve 100% mutant coverage with the top-ranked assertions.

Our analysis (c.f., Table 6.8) of the second set of buggy designs shows that

for each of the manually injected bugs, up to 4 top-ranked assertions from

146



IRank detected the presence of the bug in the design whereas the top-ranked

assertions from SRank failed to detect the presence of a bug in as many as

two case studies. Further, the top-ranked assertions from IRank localized

the bug within no more than 10 statements (average 8 statements) whereas

the top-ranked assertions from SRank localized the bug only within 12 state-

ments (average 11.75 statements). We observe that top-ranked assertions

from IRank detected 1.4 bugs per assertion, whereas top-ranked assertions

from SRank detected only 0.9 bugs per assertion, implying that top-ranked

assertions from IRank detect 1.5× more bugs per assertion than

do top-ranked assertions from SRank.

IRank ranks an assertion higher that has more important design variables

and cover more important design paths. On the other hand, SRank ranks

an assertion higher if it has a broader scope, i.e., a larger fraction of design

statements must be executed in order for that assertion to be non-vacuously

true. SRank has no systematic way to identify important design variables

in an assertion. That different perspective of SRank causes it to rank asser-

tions with poor detectability at the top of the ranked list. In Section 6.8.6

and Section 6.8.7, we discuss two debugging case studies to provide more

technical insights.

This experiment shows that top-ranked assertions from IRank

are more effective than top-ranked assertions from SRank in de-

tection and localization during debugging.

• Similarity analysis between assertion importance and coverage-

based ranking, and assertion complexity and coverage-based rank-

ing: In this experiment, our objective was to identify similarities between

assertion importance and coverage-based ranking, and assertion complexity

and coverage-based ranking. To find similarities, we calculated the correla-

tion between the two components of IRank, i.e., assertion importance and

assertion complexity with coverage-based ranking.

For this experiment, we used the same set of assertions that we used in Sec-

tion 6.6.1. Figure 6.6a and Figure 6.6b analyze the correlation between asser-

tion importance and coverage-based ranking, and Figure 6.6c and Figure 6.6d

analyze correlation between assertion complexity and coverage-based rank-

ing. For each such scatter plot, we have also calculated the Pearson rank

correlation coefficient ρ which we have shown in the scatter plots of Fig-
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Figure 6.6: Graphs (a) and (b) show correlation analysis between asser-
tion importance and statement coverage-based ranking, and graphs (c)
and (d) show correlation analysis between assertion complexity and state-
ment coverage-based ranking.

ure 6.6a, Figure 6.6b, Figure 6.6c and Figure 6.6d.

This experiment shows that assertion importance and coverage-

based ranking, and assertion complexity and coverage-based rank-

ing, have low to no correlation. This emphasizes that the design

aspects captured by the metrics are different.

• Comparison between rankings by IRank and SRank: In this exper-

iment, for a set of assertions, we assessed the agreement in rankings between

IRank and SRank. We considered only the top 20% and bottom 20% of
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Figure 6.7: Extent of agreement between IRank’s and SRank’s rankings of
the top 20% and bottom 20% assertions on the usbf pd module.
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assertions from the two ranked lists for this analysis.

We considered a total of 1443 assertions for the usbf pd module and ranked

them using IRank and SRank. In Figure 6.7 we show the extent of agreement

about the top 20% and bottom 20% of assertions between IRank and SRank.

Our analysis shows that on average, 68.07% of the top 20% of assertions

from IRank and SRank agree. On the other hand, on average, 46.45% of the

bottom 20% of assertions from IRank and SRank agree. We observed that

the ranks of the top 20% and bottom 20% assertions from IRank and SRank

agree for only six target variables and three target variables, respectively.

Further, when the top 20% and bottom 20% assertions are combined, on

average, the rank agreement is only 57.26%.

This experiment shows that in spite of different design perspec-

tives that are captured by IRank and SRank, there is a partial

agreement in their ranking that has paved the way to finding a

comprehensive ranking for assertions.

6.6.3 Comprehensive ranking for assertions

We would like to combine the diverse perspectives provided by IRank and

SRank to form a comprehensive ranking scheme.

In order to generate a comprehensive ranking for a set of assertions, we

explored rank aggregation [182, 183, 184]. Rank aggregation is a normaliza-

tion technique that combines rankings from an arbitrary number of different

ranked lists to generate a comprehensive ranking such that the disparity is

minimized. The rank aggregation technique measures the disparity between

two arbitrary ranked lists using Kendall-Tau (KT) distance [188].

In our empirical analysis we found that the average KT distance between

an IRank list and an SRank list is very high, on average 38.11 per asser-

tion, indicating that those ranked lists disagree for most assertions. Fur-

ther, our empirical results in Section 6.6.2 show that i) assertion importance

and coverage-based ranking, and assertion complexity and coverage-based

ranking have low to no correlation, and ii) assertion ranking via IRank and

assertion ranking via SRank do not agree on average on up to 50% of as-

sertions. Those three empirical results together showed that rank

aggregation is infeasible to combine IRank and SRank.
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Based on our experimental results, we attempted a heuristic combination

of IRank and SRank to generate a comprehensive ranking of assertions. We

found that a parameterized linear combination of IRank and SRank is in closer

agreement with our empirical findings than the rank aggregation process is.

Let a be an assertion, FRank(a) be the comprehensive rank of a, and A,B
be two user-configurable parameters then, FRank(a) = A×IRank(a)+B×
SRank(a).

Our case studies in Section 6.8.1 through Section 6.8.5 show that both

IRank and SRank are effective in ranking a set of assertions by capturing

different perspectives on a design. Further, our analysis showed that, in

certain cases, SRank fails to rank assertions that capture important design

behaviors at the top of a ranked list. Hence, we combined IRank and SRank

of an assertion a in the following way,

FRank(a) = (1− |ρ|)︸ ︷︷ ︸
A

×IRank(a) + |ρ|︸︷︷︸
B

×SRank(a)

Here ρ is the correlation coefficient between IRank and SRank for a set of

assertions to which a belongs. The intuition behind our favoring of the IRank

score when IRank and SRank have low correlation is that the IRank score

can capture the presence of important design variable(s) in an assertion more

accurately than SRank can.

6.7 Comparison of data structures used for

importance/complexity-based ranking and

coverage-based ranking

The importance/complexity-based ranking uses the global variable depen-

dency graph (VDG) of an RTL as the data structure, whereas coverage-

based ranking uses the control data flow graph (CDFG) of an RTL as the

data structure. In this section, we summarize the key differences between

those two data structures.

• Design information content: The VDG captures the control and data

dependencies among different design variables, but abstracts away all compu-

tations of the design. The CDFG captures both control and data dependencies,
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and all computations involving different design variables. In a CDFG, two

variables vi, vj can be control and/or data dependent in one or more different

design paths. In a VDG, those dependencies are abstracted as an edge weight

between the variables vi, vj. Hence, a VDG is an abstracted representation of

a CDFG.

• Structural difference: Since CDFG captures dependencies and computa-

tion of a design, the number of nodes and the edges are orders of magnitude

higher than the VDG of the same design. The number of nodes and the

edges in a VDG are bounded by the number of the design variables and their

pairwise dependencies in the design. Further, a design usually has multiple

CDFGs per procedural block of the RTL source code whereas a design can

have only one VDG.

• Executability: A VDG is a non-executable abstraction of a design whereas

a CDFG of a design is an executable.

• Design paths: Since CDFG is an executable, it can capture different

design paths even if one is rarely executed whereas VDG does not capture

any design paths explicitly.

The above mentioned differences in the two data structures have con-

siderable effects on the importance/complexity-based ranking (IRank) and

coverage-based ranking (SRank) in terms of computational efficiency and

bug detectability of top-ranked assertions as reported in Section 6.6. In Sec-

tion 6.8.1 – Section 6.8.7, we analyze several qualitative case studies to pro-

vide further technical insights into IRank and SRank.

6.8 Qualitative case studies on rank comparison

In this section, we demonstrate seven different case studies to explain the

different perspectives that the top-ranked assertions from IRank and SRank

capture with respect to a design. For these case studies, we use assertions

of Table 6.9 and Table 6.10 for the usbf pd module of the USB design. Ta-

ble 6.11 details global importance scores of the different design variables of

usbf pd that appears in the assertions of Table 6.9 and Table 6.10.
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Table 6.9: Comparison of ranking of a set of 41 assertions for the target vari-
able seq err of usbf pd module via IRank and SRank. Imp: The importance
score of an assertion. Com: The complexity score of an assertion. IRank:
IRank of an assertion. SRank: SRank of an assertion.

ID Assertions Imp Com IRank SRank

a25
(rx err == 1)##1(state[0] ==

0∧rx err == 0∧rx valid == 1∧pid[0] ==
0 ∧ pid[3] == 1)→ (seq err == 1)

2.310 74 3 2

a38
(rx err == 0)##1(state[0] == 0 ∧

rx err == 0∧ rx active == 0∧ pid[2] ==
1 ∧ pid[0] == 0)→ (seq err == 1)

2.335 76 4 16

a26
(pid MDATA == 1)##2(state[0] ==

0∧rx err == 0∧rx valid == 1∧pid[0] ==
0 ∧ pid[3] == 1)→ (seq err == 1)

1.033 75 21 1

a1 (state[0] == 1)→ (seq err == 0) 0.083 1 1 30

a6
(rx active == 1 ∧ pid PING == 1)→

(seq err == 0)
0.231 33 41 35

6.8.1 Case study I

Observation: IRank ranks an assertion higher based on an assertion’s ability

to cover design paths that are critical to design’s functionality whereas SRank

ranks an assertion higher based on an assertion’s scope and its ability to cover

a large number of design statements.

Example and insight analysis: We show an example where both IRank

and SRank rank an assertion at the top of the ranked list. We consider as-

sertion a25 of Table 6.9 that is ranked high by both IRank and SRank. The

assertion a25 contains two high-importance (c.f. Table 6.11) design variables

(rx err in the first cycle and state in the second cycle). Recall, in the

context of an assertion, high-importance variable implies highly connected

design variable (c.f. Section 6.3.2). Inclusion of such important design vari-

ables in the assertion causes it to cover design paths that are critical with

respect to design’s correct functionality. IRank was able to identify a25’s

ability to cover important design paths and hence ranked it higher.

On the other hand, a25 contains a design variable (rx err in the first

cycle) that is one cycle apart from the target variable (seq err). The as-

sertion a25 also contains several design variables (such as state and pid)

which are referenced several statements apart from the assignment of the tar-

get variable (seq err). These increase the temporal and spatial scope of a25

respectively, thereby allowing execution of a large fraction of design state-
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Table 6.11: Global importance scores of the variables in the antecedent of
the assertions of Table 6.9 and Table 6.10. Imp: the importance score of a
design variable.

Variable Imp Variable Imp
Name Name

state 0.03303 pid PING
0.01039pid 0.01988 pid SETUP

pid le sm 0.01076 pid ACK
pid MDATA

0.01039
rx err

0.00984pid IN rx valid
pid DATA1 rx active

ments of usbf pd between the satisfaction of a25’s antecedent and truth of

the consequent of a25. The execution of a large number of design statements

implies coverage of significant portion of design functionality. In this case,

SRank was able to identify the broad scope of a25 resulting in considerable

design functionality coverage and ranked it higher.

6.8.2 Case study II

Observation: The randomization of the free variables i.e., the design vari-

ables which do not have concrete values, can significantly affect coverage-

based ranking of an assertion. Randomization is not a part of the IRank

computation, and as such, does not affect it.

Example and insight analysis: We show an example where IRank ranks

an assertion at the top of the list whereas SRank ranks it lower due to im-

proper randomization of the free variables. We consider assertion a38 of Ta-

ble 6.9 which is ranked higher by IRank but ranked lower by SRank. The

a38 is similar to the a25 of Table 6.9 that was discussed in Section 6.8.1.

Following the same argument of Section 6.8.1, presence of high-importance

variables (rx err, state, pid) allows a38 to cover design execution paths

that are critical with respect to design’s functionality and hence IRank ranked

it higher.

In comparison, for a38, the randomization of the free variables i.e., the

design variables without concrete assignments, created variable value com-

binations which do not satisfy a branch condition or case condition. This

caused several design statements to not execute (e.g., statements in the true

branch or the statements in a case condition) during statement coverage anal-
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ysis. This reduced the fraction of design statements that are in the scope

of a38. A reduced fraction of design statements in the scope of an assertion

implies reduced coverage of design functionality and hence SRank ranked it

lower.

This is primarily due to that fact that SRank relies on dynamic analysis

of the design CDFG. In contrast, IRank statically analyzes the VDG of a

design. This allows IRank to always identify important design variables and

rank assertions higher that contain such important design variables.

6.8.3 Case study III

Observation: To rank assertions, SRank prioritizes spatio-temporal rela-

tionship between the target variable and the variable(s) in the antecedent.

Example and insight analysis: We show an example where SRank ranked

an assertion higher due to the presence of temporally and spatially sepa-

rated variables in the antecedent with respect to the target variable whereas

IRank identified the presence of less important design variables in that as-

sertion and ranked it lower. We consider assertion a26 of Table 6.9 which

is almost similar to a25 (analyzed in Section 6.8.1) except i) a26 has a dif-

ferent design variable in the first cycle (pid MDATA instead of rx err)

and ii) a26 is two cycles long. Although, pid MDATA has higher global

importance score than rx err (c.f., Table 6.11), but the relative impor-

tance score of pid MDATA at two cycles away from the target variable

(seq err) is much lower than that of relative importance score of rx err at

one cycle away from the target variable. Presence of low importance variable

(pid MDATA) caused a26 to cover design paths that are not critical to

design’s functionality. IRank was able to distinguish this subtle difference in

design functionality coverage of assertion a25 and a26 and ranked a26 lower.

On the other hand, a26 has variable (pid MDATA) that is temporally

wide apart from the target variable (seq err) and has variables (rx err,

state, and pid) that are referenced several statements apart from the assign-

ment of the target variable (seq err). This causes to widen the temporal

and spatial scope of the assertion a26 and to execute a large fraction of

design statements while calculating the SRank score of a26. Consequently,

SRank ranked a26 higher in the ranked list. Unlike IRank, SRank failed to
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distinguish the presence of a variable (pid MDATA in the first cycle) that

has a low relative importance score with respect to the target variable and

prioritizes the spatio-temporal relationship between the target variable and

the variables in the antecedent.

6.8.4 Case study IV

Observation: IRank ranks assertion based on its coverage of important

design paths irrespective of whether an assertion is combinational or temporal

whereas SRank’s reliance on statement coverage causes SRank to miss an

assertion’s relevance to the important design behaviors.

Example and insight analysis: We show an example where IRank identi-

fied presence of an important variable in a combinational assertion and ranks

it higher whereas SRank ranks it lower due to limited scope of the assertion.

We consider assertion a1 of Table 6.9 which is unlike a25, a38, and a26, is a

combinational assertion. In-depth inspection of a1 shows that it contains a

high-importance (state) (c.f., Table 6.11) variable that enables a1 to capture

an important design functionality of the state machine of usbf pd. This is

interesting since IRank was able to identify a1’s relevance with respect to de-

sign functionality even if a1 is a combinational assertion. Further, complexity

of the variable in the antecedent of a1 (state) is 1 making a1 to convey an

important design behavior with most comprehensibility. Consequently, IRank

ranks it higher.

On the other hand, lack of temporally and spatially separated variable

with respect to the target variable (seq err) severely limits the scope of

the assertion a1. This causes a tiny fraction of design statements to execute

while calculating statement coverage of a1 causing it to cover much less design

behavior. Consequently, SRank ranks it lower.

6.8.5 Case study V

Observation: Both IRank and SRank rank assertions low that lack any

important design variables and have limited scope.

Example and insight analysis: We consider assertion a6 of Table 6.9. It

does not contain high-importance variables (c.f., Table 6.11), consequently,
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it does not cover important design functionality and hence IRank ranks it

lower. Also, a6 does not contain variables in its antecedent that are tem-

porally/spatially separated with respect to the target variable (seq err).

Hence the scope of the assertion is limited and executed a tiny fraction of de-

sign statements covering very less functionality. Consequently, SRank ranks

it lower too.

In the next two sections, we present two case studies to elaborate our

observations that IRank and SRank have on the detection ability of the top-

ranked assertions. We consider the assertions in Table 6.10 for the usbf pd

module.

6.8.6 Case study VI

Observation: An assertion with a good bug detectability amounts to con-

taining important design variables and a broad scope that makes IRank and

SRank to rank it higher.

Example and insight analysis: We show a case where the assertions with

good bug detectability were ranked at the top by both IRank and SRank.

For each of the IRank and SRank, we consider three top-ranked assertions

of Table 6.10 (a25, a38, and a21 for IRank and a26, a25, and a20 for SRank)

for the target variable seq err of usbf pd module.

Each of the assertions a25, a38, and a21 contain high-importance design

variables (state,pid, rx err) either in the first cycle or in the second cycle.

Following the analysis of Section 6.8.1, presence of high-importance design

variables allowed each of the assertions to cover design paths relevant to im-

portant design functionality and hence IRank ranked them higher. Coverage

of such important design paths caused each of the assertions to have good bug

detectability. Each one of the injected bugs (bug IDs 1-5 of Table 6.8) were

affecting a design path (e.g., state machine state sequencing path affected by

bug ID 1) that is relevant to an important functionality. Consequently, each

of the top-ranked assertions were able to detect multiple bugs (c.f., column

4 of Table 6.10) up to 4 bugs (average 3.33 bugs) per assertion.

Each of the assertions a26, a25, and a20 i) contain variables in the an-

tecedent that are temporally separated (pid MDATA, rx err,pid IN)

from the target variable (seq err) and ii) contain spatially separated vari-
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ables (state,pid) that are referenced several statements apart from the

assignment to the target variable (seq err). This increases the scope of

each of the assertions i.e., it increases the number of design statements that

are covered between the satisfaction of the antecedent and the truth of the

consequent and hence SRank ranked them higher. Following Section 6.8.1,

coverage of a large number of design statements implies a possible coverage

of important design functionality. Since each of the injected bugs were affect-

ing some important design functionality, the buggy statement was one among

the covered statements in each of the cases. Hence, each of the top-ranked

assertions were able to detect multiple bugs (c.f., column 7 of Table 6.10)

up to 3 bugs (average 2.67 bugs) per assertion.

6.8.7 Case study VII

Observation: IRank’s prioritization on important design variables causes it

to rank assertions with good bug detectability at the top of the list whereas

SRank’s prioritization on spatio-temporal relationship between the target

variable and the variables in the antecedent often causes it to rank assertions

with poor bug detectability at the top of the list.

Example and insight analysis: We show a case where IRank ranked an

assertion higher by identifying the presence of important design variables in

the assertion whereas SRank ranked an assertion higher with broader scope

and poor bug detection ability. For each of the IRank and SRank, we consider

two top-ranked assertions of Table 6.10 (a201 and a18 for IRank and a83 and

a11 for SRank) for the target variables pid cks err and pid ACK for the

usbf pd module.

Each of the assertions a201 and a18 span across only one cycle compared

to a83 and a11 that span across two cycles. This means that the temporal

distance between the target variable and the variables in the antecedent are

more for a83 and a11 compared to a201 and a18. Higher temporal distance

between the target variable and the variables in the antecedent broadens

the scope of a83 and a11 causing a83 and a11 to cover more design state-

ments compared to a201 and a18. But just covering more statements is not

sufficient for bug detection. Each of the assertions a201 and a18 contains

high-importance design variable (state) which ensures that those two as-
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sertions cover important design paths critical to design functionality. As a

result, both of them were able to detect the injected bugs (specifically bug

ID 1 and bug ID 3 of Table 6.8).

On the other hand, a83 and a11 contain less important design variables

(pid SETUP ,pid) thereby a83 and a11 covers design paths that are not

critical to design functionality. In spite of broader scope, a83 and a11 failed

to capture important design functionality due to the lack of important design

variables. SRank lacks systematic identification of important design variable

and prioritizes the spatio-temporal relationship between the target variable

and the variable(s) in the antecedent. Consequently, SRank fails to detect

an assertion’s poor detectability.

These case studies show that IRank is consistent with respect

to the design functionality that makes top-ranked assertions from

IRank more valuable than the top-ranked assertions from SRank

for design comprehension and verification/validation.

6.9 Conclusion

In conclusion, we have demonstrated an effective and computationally ef-

ficient assertion ranking framework to evaluate assertion quality. Given

assertion’s widespread usage in industry in the hardware design verifica-

tion/validation cycle, we believe a comprehensive ranking framework such

as the proposed one, is the right step in the direction of objectifying the

desired qualities of assertions. While this work does not provide guidelines

on how to write high functional coverage assertions, it provides a path to

develop assertion rankings for different special-purpose requirements.
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CHAPTER 7

SYMPTOMATIC BUG LOCALIZATION
FOR FUNCTIONAL DEBUG OF

HARDWARE DESIGNS

7.1 Introduction

Pre-silicon functional debugging is widely accepted as one of the “pain points”

of verification. During massive industrial-scale design simulation, a huge

amount of simulation data is generated. Hence localizing the root cause is

tantamount to finding a needle in haystack. Automated localization to any

extent is valuable and can significantly expedite debugging and diagnosis.

In this chapter, we present a methodology for automatically localizing root

causes (c.f., Problem PR5 of Figure 1.10) of design bugs during functional

verification. This method is based on statistical analysis of failing simula-

tion traces to identify the most suspicious code zones in the RTL design.

Intuitively, if there are sufficient simulations where an output (or target)

fails, there might be some common patterns across the failing runs that are

symptomatic of the failure. Such symptoms, if inferred, would correspond to

common paths that were executed across a statistically significant number

of failing runs for that output.1 If these symptoms are mapped back to the

execution paths in the source code, they would reveal the most suspicious

parts of the design.

We mine symptoms across failing traces of a given target variable in the

form of temporal logic assertions. To map these symptoms back to the source

code, we use the notion of statement coverage of an assertion (c.f., Sec-

tion 6.2.2). Just as assertions cover statements in the design, statements

covered by the symptom can be viewed as being in the scope of the symp-

tom. The collective set of symptoms for an output will then correspond

to code zones that are the most suspicious zones for debugging the failure

1This can be any target variable. In this work, we use target variable and output
synonymously.
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in that output. Our localized source code is executable, providing a much

smaller simulation trace for inspection by the debugger.

We optimize the above algorithm to avoid false positives as follows. In

order to get sufficient evidence, we mine symptoms for the same output

across multiple simulation traces, where each trace has a different random

seed in the constrained random test. We then find common symptoms across

the symptoms mined over all simulation traces for that output. This ensures

that only few, highly suspicious symptoms are then mapped back to the code.

Our methodology relies on statistical methods to capture the symptoms of

the buggy output. Each symptom corresponds to an execution path in the

source code. In order to obtain the code fragment that the symptom summa-

rizes, we map the symptom to the source code using a statistical approach.

This approach involves applying different input stimuli that stimulate execu-

tion paths that cause the symptom to be true. Although a static source code

analysis would give an exact mapping of the symptom to the zone of state-

ments causing that symptom, this is not scalable to large designs. Hence,

we use a statistical approach as in [29] making this mapping approximate.

The reliance on dynamic, statistical methods makes our approach scalable.

We sacrifice completeness for scalability. This means although the zones we

localize to are highly suspicious with a high probability of accounting for the

bug, we cannot provide a guarantee that the zones we do not localize to are

bug free. Empirically, we find that all the injected bugs were localized by

our methodology.

Intuitively, we would like to localize to a zone that accounts for many bugs

(sensitive) and does not mispredict a bug (precise). We empirically show the

sensitivity and precision of our localizations by evaluating the localized code

zones for a variety of bugs injected into the USB 2.0 design [154]. We achieve

up to 5% localization and an average localization of up to 15% in the source

code; our method identifies these as the most suspicious code zones. The

corresponding executable has a simulation trace size that is up to 80% smaller

than the original trace. We demonstrate that the localized statements belong

to functionally related zones in the code instead of isolated code fragments.

This allows for better debugging. We use Importance, defined for software

bug localization [126] to evaluate our localized zones. Higher importance

implies the zone is highly sensitive and precise for bug localization. We show

an importance score of up to 0.857 in our localized code zones.
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Our contributions are as follows.

• To the best of our knowledge, this is the first solution to provide auto-

matic assertion based statistical bug localization for pre-silicon debug-

ging. Our method leverages the massive volumes of simulation trace

data that is generated in typical verification environments, to mine

accurate symptoms of buggy behavior.

• Our localization is in terms of executable RTL source code, focusing

the suspicious zones to a small fraction of the original source code and

simulation traces.

• We provide functionally coherent code zones that can assist under-

standing of the debugger. Since we use dynamic, statistical methods

for all phases, our approach is scalable to large designs.

7.2 Preliminaries

We consider a Verilog RTL design M. For the purpose of RTL source code

analysis, we considerM as a Verilog program. A Verilog program is a parallel

composition of a set of concurrent processes. Let V be the set of all signals

in M.

Definition 24 A simulation run with respect to a given set of constraints

C is a time annotated n cycle sequence of the values of variables from input

to output. A simulation trace with respect to a set of constraints C is the

set of all simulation runs for all inputs going to all outputs.

Definition 25 A failure run with respect to a target variable v ∈ V is

a simulation run such that v has a wrong value at the cycle in which it is

checked. The target variable v is called a failing target variable. A failure

trace with respect to a target variable v is the set of all failing runs for v.

Definition 26 A failure symptom with respect to a failing target variable

v is a propositional or temporal assertion mined from a failure trace of that

target variable. We denote a failure symptom of v as Sv. The failure symptom

is of the same form of P as defined in Definition 19. The scope of a symptom

Sv is equivalent to the coverage of assertion Sv.
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Definition 27 A localized code zone within a Verilog program M is the

set of statements inM which are in the scope of a failure symptom (Sv) with

respect to a failing target variable v.

7.3 Bug localization methodology

Figure 7.1 shows the flow of methodology. The debugging methodology it-

erates on per failing output. The proposed algorithm can be applied for any

target variable. Between two successive passes of this iterative algorithm, for

a given failure output, we localize a set of highly suspicious statements that

debugger needs to investigate further to fix the bug. One pass of the this

iterative algorithm consists of four phases – i) design simulation, ii) mining

symptoms from a single failure trace, iii) identifying common symptom across

multiple failure traces, and iv) mapping common symptoms to corresponding

code zone(s).

We use the two-port arbiter of Figure 3.1 and the assertion (c.f., Defini-

tion 19 in Chapter 6) A0: (req2 == 1 ∧ gnt == 1) X (req1 == 1) →
(gnt1 == 1) of Section 6.2.1 as a running example in this chapter.

7.3.1 Phase 1: Design simulation

In Phase 1, we simulate the design multiple times with a constrained random

test bench for a fixed large number of cycles, to create multiple failure traces

for a given output. The constrained random test (CRT) contains an inte-

ger seed that initializes the testbench random number generator in different

initial states to generate different random input stimuli in different simula-

tions. In this phase, the attempt is to gather as much evidence in the form

of simulation data as possible for a buggy output.

We use monitors to check if a desired output is buggy during a simulation

run. We isolate all the failing simulation runs for an output into a failure

trace for the next phase.

For the two-port arbiter of Figure 3.1, we run two simulation runs with

two different integer seed values for 100 cycles. In each of this simulation

run, monitor for the output gnt1 triggers indicating a mismatch of the value
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Figure 7.1: Workflow of the proposed debugging approach for a target vari-
able v.

of gnt1. We generate a simulation trace from each of these failure runs which

forms the set of failure trace of gnt1 which will be used in Phase 2.

7.3.2 Phase 2: Mining symptoms from a single failure trace

In a sufficiently long simulation trace, a design path is likely to be executed

multiple times. Assertion mining engines generate assertions from frequently

occurring patterns across multiple design paths in a simulation trace. We re-

purpose a publicly available assertion mining engine [41] in our context. For

every failing output, we provide the assertion miner with a failure trace con-

sisting of all the failing simulation runs for that output. The assertion miner

now infers statistically relevant patterns among the frequently executed paths

in the failure trace. The resulting assertions are summaries of the frequently

occurring behavioral patterns when the output is buggy. These are failure

symptoms for that output. Multiple failure symptoms could be generated

per output in this phase. In the assertion miner we used, each symptom is

internally formally checked, indicating that these are true symptoms. Other

assertion mining engines without the formal check can also be used in this

phase.

For the two-port arbiter of Figure 3.1, the following symptoms are mined
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from failure trace 1 of gnt1:

1. S1.1: G((¬req2 ∧ gnt ) ∧ X (req1)→ X (gnt1))

2. S1.2: G(¬req1→ ¬gnt1)

3. S1.3: G((req1 ∧ req2) ∧ X (¬req2)→ X (¬gnt1))

and from failure trace 2 of gnt1

1. S2.1: G(req1 ∧ req2→ gnt1)

2. S2.2: G((req1 ∧ req2) ∧ X (¬req2)→ X (¬gnt1))

3. S2.3: G(¬req1 ∧ X (req1)→ X (gnt1)).

From each failure trace of gnt1, the assertion mining engine identifies three

different suspicious paths occurring frequently in both failure traces.

7.3.3 Phase 3: Identifying common symptom across multiple
failure traces

This phase is the optimization step for more sensitive and precise localiza-

tion. At this point, a set of failure symptoms have been generated for the

output for a single failure trace. We repeat this process across multiple fail-

ure traces for the same output. We identify common symptoms across all

sets of failure symptoms generated for the output of interest. Since each

symptom summarizes an execution path in the design, multiple symptoms

from a single trace might localize to code zones that are not very sensitive or

precise. The high number of symptoms per failure trace could also lead to

lesser localization, by reporting many code zones as suspicious. We therefore

consider only those symptoms that are common across all the failure traces

and ranked higher (following the assertion ranking method of Chapter 6) for

further analysis. This ensures that the common symptoms we consider are

only the most suspicious candidates. This step leverages the already exist-

ing large volumes of simulation trace data in industrial settings. Since our

method relies on statistical analysis, more data will increase the confidence

of our result.

Finding common symptoms amounts to finding common execution paths

that could be triggering the bug. The paths would need to be of same length.
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Since each symptom is an assertion, we apply the conditions below to find

commonality across two assertions. Two assertions Si and Sj are common if

the following occur.

1. The consequent of Si and Sj have the same signal-value pair for the

given output.

2. The temporal delay between successive Ak’s (recall antecedent of a

symptom is of the form A = A0 ∧ X (A1) ∧ XX (A2) ∧ . . . ∧ Xm(Am)

where X is a delay operator) in the antecedent of Si and Sj has to be

identical. Intuitively, this implies that the two different paths which are

identified by that assertions, constitutes a different branch conditions

at same delay interval.

3. Each of the Ak’s in Si and Sj should be a conjunction of the same set of

propositions (recall a proposition is a signal-value pair where the value

can be either “0” or “1”). Intuitively it implies that two paths identified

by two assertions essentially constitutes same branch condition in every

clock cycle.

For the arbiter of Figure 3.1, two sets of symptoms are mined for output

gnt1 from two different failure traces. Each of the symptoms S1.1, S1.3, S2.2

and S2.3 are two cycles long and each of S1.2 and S2.1 are one cycle long. For

S1.2 however, the consequent has a signal value pair of 〈gnt1, 0〉 whereas the

consequent of S2.1 has a signal value pair of 〈gnt1, 1〉, violating Condition 1

above. These are not common. Symptoms S1.1 and S2.3 have a signal value

pair 〈gnt1, 1〉 and symptoms S1.3 and S2.2 have a signal value pair 〈gnt1, 0〉.
As per Condition 2, each of the symptom pairs has an equal delay severation

in between successive Ai’s. However, A0 of S1.1 contains the propositions

{¬req2, gnt } whereas the A0 of S2.3 contains the sole proposition {¬req1}
which violates Condition 3. A0, A1 of S1.3 and S2.2 contain exactly the same

set of propositions and hence satisfy Condition 3. Since the symptom pair

〈S1.3, S2.2〉 satisfies all three conditions, this is the only common symptom

across the two failure traces.
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7.3.4 Phase 4: Mapping common symptoms to functional
code zones

A common symptom identified in Phase 3 for a given output implies existence

of a highly suspicious path in the design, whose execution causes the given

output to fail across multiple traces. In Phase 4, we map back the common

symptom for a given output to a particular code zone of the RTL source

code. We try to identify all the statements of the RTL source code that

are in the scope of the common symptom. Since a symptom is essentially

an assertion mined by the assertion mining engine from a failure trace for

a given output, we use the definition of the code coverage of assertion as

proposed in [29] (c.f., Section 6.2.2 and Figure 6.1). In [29], the above

computation is found to be complex if computed statically. Hence, these

statements are computed by constrained random simulation of the design

under the constraint that antecedent becomes true, until the consequent

becomes true. All the statements executed during such a simulation are

recorded as covered. This process is repeated multiple times by simulating

different paths each time under the same constraints. The simulations are

stopped at some pre-decided number of iterations. The constrained random

simulation method is scalable but incomplete, since it computes an under-

approximation of the set of truly covered statements.

We use a similar method to compute the statements in the scope of a

symptom. While we can accurately compute the scope of each symptom

that we simulate, we cannot guarantee that all the statements within the

scope of the symptom have been simulated. Hence, there is a chance that

a bug could lie in a scope that we have not simulated. However, in all our

experiments, we have found all the statements in the scope of the symptom.

We report these set of localized statements as the most suspicious code zones

for further investigation.

In the arbiter, the scope of the symptom G((req1 ∧ req2) ∧ X (¬req2) →
X (¬gnt1)) is the suspicious code zone consisting of lines 5, 6, 8, 10, 12, 17

of the Figure 3.1.

Further investigation shows that the bug is in line 14 and that needs to be

changed to gnt1 = req1 & ¬req2.

For a given output, every common symptom is iteratively mapped to a

suspicious code zone. Our experimental analysis shows that a failing output
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Table 7.1: List of bugs and bug IDs. DD: Data dependent bugs, CD: Control
dependent bugs.

Module No. of Bugs Type of
Name Statements Injected Bugs DD / CD
usbf pa 186 8 4 / 4
usbf pd 195 4 1 / 3

usbf idma 234 8 5 / 3
usbf pe 469 8 1 / 7
usbf wb 104 4 1 / 1

can be mapped to a single bug in a code zone or multiple bugs in a single

code zone, a single bug can affect one or more than one outputs, one or more

than one bugs spread across functionally correlated code zones can affect a

single output. The algorithm can be invoked after fixing the bug, and will

continue until there are no more failing outputs in the simulation phase.

7.4 Experimental setup

Design testbed: We use the publicly available USB 2.0 [154] design to

demonstrate our results. In our experiments, each design is simulated 15

times with 15 different integer seed values for 5000 clock cycles. Table 7.1

details the different modules of the USB design and the distribution of the

bugs that are injected in different modules. Table 7.2 details several injected

bugs, the RTL location of bug injection and the possible symptoms.

Execution platform: All experiments on the USB design modules were run

on an Intel Xeon CPU E3-1240 8-core processor running at 3.4 GHz with 16

GB RAM.

7.5 Experimental results

7.5.1 Reduction in failure traces

For debugging, the localized source code alone might not be sufficient, since

it does not contain cycle related information. A bug may not manifest in

the source code, but might manifest in the sequential behavior. Both source
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Table 7.2: Sample bugs injected into different modules of USB design. D:
indicates data-dependency bug. C: indicates control dependency bug.

Module Bug Bug Bug
Name ID Type Detail

usbf pa

ID 1 D Wrong assignment to tx spec data causing
wrong data to propagate at tx data

usbf pd
ID 2 C Swapped control signals data done and

data valid d causing wrong value to rxv1

and propagating wrong rx data valid signal

usbf

ID 7 C Change of constants in the condition
(adr cb[1:0] == 2’h3) to (adr cb[1:0]

== 2’h0) and (adr cb[1:0] != 2’h0) to

(adr cb[1:0] != 2’h3) propagating wrong
value in wr last and in word done forces to
store wrong output data even if a complete
word is not received. Also sends wrong
memory request through mreq request via
word done r

idma ID 4 C Change of logical operator || to && causing
wrong assignment in address counter

usbf pe
ID 2 C Changed the case condition for PID error re-

synchronization which makes data packet ID
faulty causing wrong data packet to be sent
through idin

usbf wb
ID 2 D Changed & to | causing wrong data assignment

to wb req s1 which in turn causes wrong state
transition from state IDLE

Table 7.3: Reduction in simulation length with localized code zone executable
as compared to original failure trace length.

Module Bug Target Original Localized
Name ID Output Simulation Simulation

(in cycles) (in cycles)
usbf pa ID 1 tx data 520 110
usbf pa ID 4 tx data 630 125
usbf pa ID 7 tx valid 510 105

usbf idma ID 1 tx data st 740 150
usbf pe ID 8 idin 755 160
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code and simulation are required for effective debugging. Our localized code

zone is an executable that can be simulated to generate a much smaller

failure trace than the original failure trace. Table 7.3 shows the extent of

savings in simulation time by replaying only the localized executable. In each

case, we could recreate the failure trace for the given output within 100 - 160

cycles, whereas in the original simulation, the first failure of the given output

happened well beyond 500 cycles. The smaller failure trace along with the

localized statements can assist the debugger to identify sequential bugs.

7.5.2 Functional coherence analysis of localized code zones

We show that our method localizes to functionally coherent code fragments,

enhancing the understanding of the human debugger about a failure. We split

different modules of USB 2.0 into different functional code fragments as per

the specification. In column 3 of Table 7.4, we indicate which of the functional

code fragments we injected the bug into. Column 5 shows the failing output.

The Localized Functional Code Fragment column of Table 7.4 details the

functional code fragment that our method localizes to. Our method was able

to select as few as two functional code fragments as in Bug ID 3 of usbf pa,

Bug IDs 4 and 7 of usbf idma. In the case of Bug ID 8 of usbf pe, as many

as six functional code fragments were selected since this is a subtle bug that

is deeply embedded in the design and takes long to propagate to the output

idin. In each case, the localized code zones are not disconnected fragments,

but preserve the functional modularity and integrity of the source code.

7.5.3 Quantitative analysis of localized code zone

In this experiment, we show the extent of localization as the fraction of RTL

source code that the human debugger needs to examine as against the entire

RTL source code. In the case of Bug ID 5 of usbf pa, the bug is localized to

less than 5% of the code, but for Bug ID 8 of usbf pe, the bug is localized to

around 29% of the code. This is due to Bug ID 8 being a subtle sequential

bug deeply embedded in the design.

Bug ID 1 of the module usbf pa was injected in the Data Path Mux. Data

Path Mux allows data packet ID or 16-bit cyclic redundancy check sum to
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Table 7.4: Details of identified bugs and zone mapping.

Module Bug Injected Localized Functional Taregt Code to
Name ID Bug Zone Code Fragments Variable Investigate

usbf pa

ID 1
Data Path

Muxes

PID Select, Data Path Muxes, CRC
Logic, CRC1, CRC2 and WAIT state

of state machine
tx data 25.48%

ID 3 PID Select PID Select, Data Path Muxes tx data 18.87%

ID 5 State Machine
Tx Valid Assignment, IDLE state of

State Machine
tx valid last 4.25%

ID 4
Data Path

Muxes
Data Path Muxes, PID Select, CRC

Logic
tx data 18.75%

ID 8 CRC Logic
Misc Logic, DATA, WAIT and CRC1
state of the state machine, Data Path

Muxes
tx data 9.75%

ID 7
CRC1 state of

the state
machine

CRC Logic, Tx Valid assignment,
IDLE, DATA, WAIT and CRC1 state

of state machine
tx valid 16.12%

usbf pd
ID 2

Data Receiving
Logic

Data receiving logic, ACTIVE and
DATA state of State Machine Logic

rx data valid 18.87%

ID 4
CRC checking

in Data
Receiving logic

CRC checking, Active and Data state
of State Machine

crc16 err 7.2%

ID 3
TOKEN state

of state
machine

Token Decoding logic, CRC logic,
TOKEN state of the state machine,

Frame number logic

token valid,
crc5 err,
frame no

10.25%

ID 1
Frame number

logic
Token decoding logic, TOKEN state

of state machine, Frame number logic
frame no 7.7%

usbf idma

ID 7 Rx Logic
Address counter in Misc Logic, Rx

Logic
wr last 10.55%

ID 4
Address

assignment in
Misc Logic

Rx Logic, Address Counter in Misc
logic

word done r 8.18%

ID 6
Size Counter
in Misc Logic

Size counter in Misc Logic, Tx Logic send data 6.6%

ID 1,
ID 2,
ID 8

Address
counter logic

Address Counter logic, Tx Logic,
Misc Logic

tx data st 18.71%

usbf pe
ID 2,
ID 3

Data PID
sequencer

Data PID sequencer, Register file
update logic, Buffer decoding

allocation check, New buffer address
logic, IN and OUT end point logic

idin 27.71%

ID 4
Current PID

decoder

OUT2A, OUT state of state machine,
Current PID decoder, Outgoing

packet PID assignment, Misc logic

data pid sel,
token pid sel,
send token

11.73%

ID 5
IN operation

logic in Buffer
select

IN operation logic, Buffer full / empty
logic, New Buffer size logic, Register

file update logic
idin 17.71%

ID 6
Buffer space

logic

OUT2A of state machine, Buffer
space logic, Endpoint indicator logic,

Buffer available check logic

token pid sel,
send token

8.47%

ID 7
Out packet
size logic

Out packet size logic, Out end point
operation logic, CSR decoding logic,

UPDATE2 state of state machine
out to small 7.4%

ID 8
Track logic of

control
endpoints

Data PID sequencer, Register file
update logic, Buffer decoding

allocation check, New buffer address
logic, IN and OUT end point logic,

Track logic of control endpoints

idin 29.86%

usbf wb ID 2
Sync

WISHBONE
request

IDLE, MA WR and MA RD states of
State Machine, Sync WISHBONE

request
ma req 18.4%

ID 1
MA RD state

of state
machine

State machine logic ma req, ma we 18.35%
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Figure 7.2: Different functional code fragments usbf pa modules. Z1: Misc
logic. Z2: PID select. Z3: Data path mux. Z4: Tx valid assignment. Z5:
CRC logic. Z6: State machine.

pass depending on whether the USB packet decoding module is in the CRC

checking state. The monitor for output tx data failed in Phase 1 of the

proposed algorithm. Our algorithm localizes the bug in the functional code

fragment of PID select, Data Path Muxes and CRC logic, each of which

is a part of the functional code fragment Z1 and a few states of the state

machine which is a part of the functional code fragment Z6 of Figure 7.2.

Although, usbf pa has six different major functional code fragments, our

method successfully discarded two of them and outputs only related four

code fragments for further investigation. Further analysis shows that the

code contained in Z1 and Z6 account for the 58.6% (c.f., Figure 7.2) of the

total RTL code of usbf pa but the last column of Table 7.4 shows we have

to only check 25.48% of the RTL code. Our method eliminates 33.12% code

from Z1 and Z6 achieving further localization.

We also note two interesting bug scenarios shown in Table 7.4. Bug IDs 1,

2 and 8 of usbf idma cause a single output tx data st to fail. We identified

two different symptoms across multiple failure traces for the output variable

tx data st. One of the symptom localized Bug IDs 1 and 2 and another

symptom helped to localize Bug ID 8. Another interesting scenario was Bug

ID 4 of usbf pe which simultaneously causes three different outputs namely

data pid sel, token pid sel and send token to fail. Considering any one

failure output for the debugging analysis would do the job. We selected all

the three different failed outputs in three independent analyses and were able

to locate the bug correctly. The localized functional code fragment shown for

this case is the union of all the code fragments that were identified by our
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Figure 7.3: Graphs showing Importance of a code zone in identifying a bug on
different USB modules. The colorbar on the right side of each graph indicates
the numeric Importance value of different colors present in different squares.
The darker the color the higher the Importance of the zone in identifying a
particular bug.
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algorithm while treating three different outputs independently.

7.5.4 Specificity and sensitivity analysis of localized code
zones

We use Importance of a code zone [126] as a metric to evaluate our localiza-

tion. Importance combines sensitivity and precision is by computing their

harmonic mean. For example, from Table 7.4, for the module usbf pa we

note that Zone 3 i.e. Data Path Mux Logic localizes two different bugs in

the code and hence its sensitivity is very high. Further, Data Path Mux

logic appears with three other code zones for the Bug ID 1 and hence the

precision of Data Path Mux Logic w.r.t Bug ID 1 is 1
4
. Hence, the Impor-

tance of Data Path Mux Logic w.r.t Bug ID 1 is 2
1
2

+4
= 4

9
. In Figure 7.3, we

graphically represent the importance of each of the code zone w.r.t each of

the bug we identified. Darker the color of a square, higher is its importance

to a particular bug.

7.6 Conclusion

State-of-the-art debugging tools like Synopsys Verdi and Cadence Simvision

aid visualization, but do not provide bug localization. To the best of our

knowledge, we present the first automated, efficient assertion-based solution

to aid RTL debugging through bug localization. We believe that the pro-

posed debugging method will automate and expedite an otherwise tedious

and manual RTL functional debugging.
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CHAPTER 8

CONCLUSION

In this dissertation, our objective was to provide automation in the unsys-

tematic, ad hoc, and manual SoC validation flow. To achieve this objective,

we proposed scalable and vertically integrated solutions for SoC validation.

We have proposed scalable, efficient and effective hardware tracing that

can be applied at the different level of design abstraction. We depart from

the netlist-level abstraction of prior art and apply our hardware tracing so-

lution at the behavioral level and at the application level of a SoC. Applying

hardware tracing at higher design abstraction enabled us to scale hardware

tracing to designs containing more than a million flip-flops which is beyond

the capacity of the state-of-the-art hardware tracing solutions. We showed

that our hardware tracing techniques are computationally efficient and se-

lects high-quality and high-information content signals that are valuable for

failure diagnosis.

We have also developed a machine-learning-based post-silicon debug and

diagnosis solution. We pose post-silicon debug and diagnosis problem as

an outlier detection problem. We engineered two generic features that are

highly relevant to the diagnosis task to characterize a post-silicon buggy

execution. We used our engineered features to transform raw trace data

to the engineered feature space to demarcate normal design behavior from

buggy behavior. We have shown that our solution is scalable, effective, and

improves debugging by diagnosing many more bugs at a fraction of time as

compared to manual debugging.

To improve the quality of assertion-based verification, we have presented an

automated assertion ranking technology that analyzes hardware source code

and ranks a set of assertions based on their design functionality coverage. We

have shown that our ranking methodology is computationally efficient, ranks

an assertion higher that has high functional coverage and cover important

design paths, and top-ranked assertions have high bug detectability.
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Due to a rapid changing design paradigm and design complexity, functional

debug of contemporary hardware designs are becoming increasingly difficult.

To aid functional debug we have proposed an assertion-based automated bug

localization technique for RTL. Our technique is based on identifying statis-

tically relevant common symptoms across failing simulation traces through

mining, and mapping these back to the corresponding execution paths in

the RTL source code. We showed that our technique can localize to small,

focused, functionally coherent code zones that can expedite debugging.

In summary, we have presented a suite of techniques for functional valida-

tion of industrial-scale SoCs that are a significant departure from traditional

pre-silicon and post-silicon validation. We have overthrown the idea of gate-

level analysis for SoC post-silicon validation and instead of going bottom-up

we have emphasized a top-down perspective. We have shown with conclusive

empirical evidence that going forward, application-level analysis is the key

to scale post-silicon validation to industrial-scale SoCs. The techniques that

are proposed in this dissertation are the first step to bridge the widening

gap between academic research and the present and future requirements for

industrial scale SoC post-silicon validation. Our proposed techniques can

bring order in an otherwise chaotic SoC validation paradigm and introduces

automation in current unsystematic, ad hoc, and manual settings. Finally,

our proposed validation flow can plug into the current industrial validation

process but can provide multiple order of magnitudes of benefit.
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CHAPTER 9

RESOURCES

In this chapter, we discuss how to obtain and use various tools that are

developed as part of this dissertation.

9.1 PRoN: Hardware tracing tool for netlist-level and

behavioral-level designs

The PageRank based hardware tracing tool i.e., PRoN can be downloaded

from https://gitlab.engr.illinois.edu/dpal2/tcad journal iccad 1

5 t2 syn/tree/master/ICCAD15 Extension and [52].

9.1.1 Software requirements

The PRoN tool has been implemented using Python 2.7.x and Perl 5.40.x.

One can use the synthesized OpenSPARC T2 netlists to conduct new ex-

periments. Otherwise, one would need Synopsys Design Compiler [189] to

synthesize a design to gate-level netlist. For synthesis we use NanGate 45 nm

library [160]. Our signal selection tool expects a netlist in ISCAS89 format.

We provide additional scripts that convert DC synthesized list to standard

ISCAS89 format. These conversion scripts can only work for the NanGate

45 nm library.

9.1.2 Quick start

The PRoN tool is available in the python code directory and can be run using

the following command.

python python code/iscas89 pagerank ana.py 〈design netlist〉
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The tool outputs a list of flip-flop signals sorted according to their enhanced

PageRank score. A comprehensive run script to run PRoN and other state-

of-the-art tool is available in as python code/run all netlisy.py.

9.1.3 Details of directory hierarchy of the repository

• perl code: The directory contains Perl scripts to convert synthesized

Design Compiler netlists to ISCAS89 format.

• python code: The directory contains the primary PRoN tool and

additional auxiliary Python codes for various purposes.

• scripts: The directory contains example Tcl scripts for synthesizing

different OpenSPARC T2 modules. These can be reused if a different

technoilogy library is used for synthesis.

• synthesized netlist: The directory contains the synthesized netlists

and ISCAS89 format netlists for a wide variety of OpenSPARC T2

design modules.

• testbenches: The directory contains constrained random testbenches

for various OpenSPARC T2 design modules for simulation.

9.2 Application-level hardware tracing tool

The application-level message selection tool has two different repositories.

The first repository contains different buggy OpenSPARC T2 SoC de-

signs that can be downloaded from https://gitlab.engr.illinois.edu

/dpal2/opensparct2 and [53]. The master branch contains the original

OpenSPARC T2 code. Each of the buggy version of the OpenSPACR T2 is

available in the same repo as a different branch. To reuse any buggy design,

an appropriate branch of this repository needs to be cloned.

The second repository contains the application-level message selection frame-

work and the signal-to-message conversion framework. These can be down-

loaded from https://gitlab.engr.illinois.edu/sharma53/post silic

on protocol lts/tree/merge branch and [53].
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9.2.1 Details of the directory hierarchy of the repository

• ascode: This directory contains application-level message selection

tool and the necessary configuration file. Section 9.2.2 details the steps

to run the tool.

• monitors: This directory contains the Verilog monitors that monitor

interface signals of different IPs, convert them into equivalent messages

and store the messages in a trace file for analysis. These Verilog mon-

itors need to be simulated with OpenSPARC T2 design modules for

monitoring.

1. inbound: This directory contains monitors for observing signals

going from the uncore to the core side of the OpenSPARC T2.

2. outbound: This directory contains monitors for observing signals

going from the core to the uncore side of the OpenSPARC T2.

3. other monitors: This directory contains monitors for observing

signals between NCU, NIU, and DMU.

9.2.2 Quick start

The repository contains a sample config.cfg file. To construct an interleaved

flow for a set of flows, one needs to specify the following parameters per flow

in the config file.

1. noofinstances: number of concurrent instances of each of the flows.

2. procolonodes: state nodes of each of the participating flows.

3. protocolatom: state(s) of a flow that needs to be executed atomically.

4. protocol: a Python dictionary that contains source state node, the mes-

sage that needs to occur and the destination state node. Example of a

such dictionary is provided in the config.cfg file.

Also, the user needs to mention which flows to be interleaved and to be

used for message selection and the trace buffer width at the beginning of the

configuration file.

The steps to run the tool are as follows.
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1. Run lts.py to create the interleaved flow of all the flows. After comple-

tion, this script will dump the resulting interleaved flow in a serialized

ltsdump file.

2. Run msg sel.py to select messages. This script will parse the ltsdump

file and will output the selected messages for tracing.

9.3 Post-silicon debug and diagnosis tool

The post-silicon diagnosis tool can be downloaded from https://tinyurl.

com/yxmztg5v and [54].

9.3.1 Software requirements

The tool has been implemented using Python 2.7.x and Perl 5.40.x. Apart

from standard Python libraries, it also needs PyOD [181] and Scikit-learn [190].

We have tested our implementation with PyOd version 0.6.8 and Scikit-

feature version 1.0.0.

9.3.2 Quick start

The tool can be run using the following command.

python src/automated debugging.py -m anomaly -g 100000

where “-m” tells the method to be used and “-g” tells the granularity of

parsing the message sequence to create message aggregates. The repository

contains a detailed README file.

9.4 GoldMine: Assertion ranking tool

The assertion ranking engine has been implemented as a part of GoldMine

assertion generation tool. The assertion ranking engine can rank both au-

tomatically generated and manually written assertions. To obtain assertion

ranking engine along with GoldMine, navigate to https://bitbucket.org/
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goldmines code/goldmine new/src/v1.0.1/ and clone the git repository.It

can also be downloaded as a tar ball from [191].

9.4.1 Software requirements

• Python backend libraries: The assertion ranking engine has been

implemented in Python 2.7.x. In order to run it properly, it needs addi-

tional library support. We have detailed the different Python libraries

along with their version against which GoldMine was tested at [192].

• Verilog simulator: GoldMine is designed to use both Synopsys [193]

VCS and IVerilog [194] Verilog simulator to generate random simulation

trace data for the data mining engines. GoldMine can also accept value

change dump (VCD) format trace file on the command line if either of

the Verilog simulators is not available.

• Formal verification engine: GoldMine uses Cadence IFV [152] to

formally verify the assertions it generates. GoldMine will label an as-

sertion unverified if IFV is not available. The assertion ranking engine

will rank all generated assertions regardless of their formal verification

status.

9.4.2 Quick start

GoldMine assertion ranking engine can be executed using the following com-

mand.

goldmine [options] 〈input files〉

For example, one can use the following command to generate and rank as-

sertions for a two-port arbiter that is available as install/verilog/Arbiter/arb2.v.

goldmine verilog/arb2.v

GoldMine will parse the input Verilog design files, simulate a random

testebench (if a VCD file is not supplied at the command line) and will

generate a set of assertions for the design top module. GoldMine will store

all its analysis outputs, different graphs, and the intermittent scripts inside a
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goldmine.out/〈top module〉 directory inside the run directory. The meaning

of different files and directories that are relevant to assertion ranking are

given below.

• 〈top module〉/static: 〈top module〉.def contains the variable defini-

tion chain details, 〈top module〉.use contains the variable-use chain de-

tails. 〈top module〉.dep shows the edge weights of the global variable

dependency graph, 〈top module〉.rank shows global importance score of

each of the design variables, and 〈top module〉.path contains the differ-

ent paths in the design per procedural block.

The cdfg directory contains the control-data flow graph of each of the

procedural block that can help in design understanding and in debug-

ging. The cone directory contains the relative dependency graph per

output for a specified temporal length. This graph is used for rela-

tive importance and relative complexity score calculation per output.

var dep graph contains the global variable dependency graph and the

graph summary.

• 〈top module〉/verif: This directory contains a sub-directory for each

of the mining engine used. Within each of these sub-directories, there

are directories named after the outputs. Each such directory contains

two files, 〈output name〉.gold and 〈output name〉.cone.

The 〈output name〉.gold file contains all the GoldMine generated asser-

tions sorted according to the IRank score along with their importance

and complexity score. The 〈output name〉.cone file contains the rela-

tive importance and relative complexity score of each of the variables

in the cone-of-influence of an output.

9.4.3 GoldMine command-line options and configuration

GoldMine is highly customizable using a configuration file. Detail of the

different parameters in the configuration file and a detailed description of all

of the command line options can be found at [195].
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