
AUTOMATED MIXED-SIGNAL
VERIFICATION USING MONITORS AND

SIMULATION RELATIONS

Debjit Pal

Automated Mixed-Signal Verification using
Monitors and Simulation Relations

Thesis submitted to

Indian Institute of Technology, Kharagpur

For the award of degree

of

Master of Science

by

Debjit Pal

Under the guidance of

Prof. Pallab Dasgupta

Dept. of Computer Science and Engineering

and

Prof. Siddhartha Mukhopadhyay

Dept. of Electrical Engineering

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
January 2013

©2013 Debjit Pal. All rights reserved.

To my Dear Parents and Teachers....

v

APPROVAL OF THE VIVA-VOCE BOARD

/ /20

Certified that the thesis entitled Automated Mixed-Signal Verification using
Monitors and Simulation Relations submitted by DEBJIT PAL to Indian Institute
of Technology Kharagpur, for the award of the degree of Master of Science has
been accepted by the external examiners and that the student has successfully
defended the thesis in the viva-voce examination held today.

Signature: Signature: Signature:
Name: Name: Name:

(Member of DSC) (Member of DSC) (Member of DSC)

Signature: Signature:
Name: Name:

(Supervisor) (Supervisor)

Signature: Signature:
Name: Name:

(External Examiner) (Chairman)

vii

CERTIFICATE

This is to certify that the thesis entitled Automated Mixed-Signal Veri-
fication using Monitors and Simulation Relations, submitted by Debjit
Pal to Indian Institute of Technology Kharagpur, is a record of bona fide research
work under our supervision and is worthy of consideration for the award of the
degree of Master of Science of the Institute.

Prof. Pallab Dasgupta Prof. Siddhartha Mukhopadhyay

Supervisor Supervisor

ix

DECLARATION

I certify that

a. the work contained in this thesis is original and has been done by me under
the guidance of my supervisors.

b. the work has not been submitted to any other Institute for any degree or
diploma.

c. I have followed the guidelines provided by the Institute in preparing the
thesis.

d. I have conformed to the norms and guidelines given in the Ethical Code of
Conduct of the Institute.

e. whenever I have used materials (data, theoretical analysis, figures, and text)
from other sources, I have given due credit to them by citing them in the text
of the thesis and giving their details in the references. Further, I have taken
permission from the copyright owners of the sources, whenever necessary.

Debjit Pal

xi

Acknowledgement

At the end of my pursuit towards obtaining Master of Science from IIT Kharag-
pur, when I look back I am simply overwhelmed by the amount of support, in-
spiration and confidence I gathered from a lot of people around me. I am just
worried by the fact that in my effort to acknowledge my indebtedness towards
them I might forget to mention a a few. However, I shall not shy away from the
task and do my best. Firstly, I must thanks my family, especially my ever caring
parents, who throughout my life have lent their unconditional material and emo-
tional support to me. Whenever I lost my way they were there to help me out. I
humbly dedicate this thesis to them. Being the younger child of the family, I was
pampered a lot by my sister and later by my brother-in-law. They have given me
everything without ever asking for it.

I would like to express my gratitude towards my supervisors Prof. Pallab
Dasgupta and Prof. Siddhartha Mukhopadhyay for helping me in building this
thesis. They give me suitable research problems and then guided me in solving
those. The invaluable technical suggestions given by them certainly helped to
complete this thesis in more technically correct form. It is due to Prof. Dasgupta’s
encouragement and support which helped me to learn numerous industry standard
CAD tools with hands-on-experience. Also, I would like to express my gratitude
towards Prof. Dipankar Sarkar for innumerable number of technical and non-
technical discussion sessions I had with him. Their guidance, support, inspiration
and constant encouragement gave me the will to overcome the failures and proceed
towards my goal.

I would like to thank all of my friends at IIT Kharagpur for their co-operation
which made my stay here enjoyable and memorable. I thank my co-workers Antara
Di, Dr. Scott Little (formerly in Freescale Inc. and now in Intel, Portland) and
Santhosh for helping me in different project works. I also take the pleasure of
acknowledging Soumyadip (Pagol), Chandan Da, Aparna Baudi, Soumyojit Da
(Robo Da), Kunal, Partha, Gargi, Devleena, Debashis Da (DMon Da), Pradipta
Da (PD), Jyotirmoy Da (Moy), Sourish Da, Anshuman Da, Rajdeep Da, Satya
Gautam, Kamalesh Da, Prasenjit Da, Aritra Da, Srobona Di, Pradipta, Jayeeta
and my other numerous friends in VSRC for making IIT KGP a wonderful place
to work at. I specially thank Arijit Da for giving me my initial lessons on Linux
which helped me a lot later. Also, I have learned a whole gamut of things from
Subrat Da during my initial phase of MS work. I would like to thank Anirban Da
(VLSI Lab), Shibu Da (CSE Software Lab) for their technical support. I would
like to thank “Cadence India Support” for helping me a lot while I faced problems
in CAD tools. I would also like to thank Mr. John Gough (Design Manager,
NSC UK pvt. Ltd.) for allowing me to do an internship in the Greenock Design
center of NSC in 2009. I would also thank Semiconductor Research Corporation
to partially support my MS work.

Finally, I want to thank almighty for his blessings without which the journey
of my MS course would not have been so smooth.

Debjit Pal

xiii

List of Abbreviations

OVL – Open Verification Library
PORV – Predicate Over Real Variables
MTL – Metric Temporal Logic
OVA – Open Vera Assertions

MITL – Metric Interval Temporal Logic
STL – Signal Temporal Logic
LTL – Linear Temporal Logic
PSL – Property Specification Language
SVA – System Verilog Assertion

VLSI – Very Large Scale Integration
HDL – Hardware Description Language

VHDL – VLSI Hardware Description Language
LDO – Low Dropout
AMS – Analog and Mixed Signal

AMS-VL – Analog-Mixed Signal Verification Library
PLL – Phase locked Loop

PWM – Pulse Width Modulation
PFM – Pulse Frequency Modulation
BDD – Binary Decision Diagram
FSM – Finite State Machine

KL – Kanellakis-Smolka
PT – Paige-Tarjan

LTS – Labeled Transition System

xv

List of Symbols

∧ – Logical AND
∨ – Logical OR
¬ – Logical NOT (Negation)
× – Cartesian Product
∈ – Belongs to
� – simulates
|= – models
⇒ – implies
⊆ – Subset of
→ – maps to
∀ – for all
∃ – there exists
= – is equal to
6= – does not equal
⇒ – implies
R – real set

xvii

Abstract

Modern Analog and Mixed Signal (AMS) circuits consist of both digital and
analog components. The verification environment for such circuits is mixed-mode
and verification methods that work seamlessly in mixed-mode environment are
needed. Although industry standard optimized mixed-mode simulators that can
simulate both analog and digital components are now available but advanced de-
bugging paradigm employs formal properties and verification libraries which are
still not ubiquitous in mixed signal designs although, their use is now standard for
digital circuits. In any circuit design, an implementation is typically a refinement
of the specifications. Hence, it is essential to check conformance between imple-
mentation and specification. In the AMS domain conformance can be defined in
terms of specific properties involving a set of signals over time. This thesis presents
a methodology by which a verification engineer can build a property verification
network graphically from a set of basic property blocks. It also presents a formal
method for conformance checking between digital controllers of AMS circuits and
further extends to a feature based simulation trace based conformance checking
methodology for AMS Circuits.

In this thesis we present the syntax and semantics for a library of parameterized
modules such that these modules can be composed graphically to create a verifi-
cation network repository for different complex AMS properties. Thus, we have
brought together the advantage of graphical composition from Open Verification
Library (OVL) available for digital circuits and dense real time signal handling
capacity of Signal Temporal Logic (STL) essential for continuous signals. We also
show that these library modules can be interfaced with suitable auxiliary functions
and can be used to verify properties that cannot be captured ordinarily by asser-
tion languages. We show that the library modules are capable of synchronizing
with AMS simulators and can generate multiple threads of property verification
to ensure that no potential match / fail is missed.

Equivalence checking and simulation relation finding is a very standard and
well studied problem in the digital domain, where equivalence is defined in terms
of logic. In the AMS domain, equivalence is relevant only w.r.t certain features.
One of the main part of an AMS circuit is the digital controller. These digital
controllers have analog interface. For these controllers the inputs are not only
propositions but also Predicates over Real Variables (PORVs). In this work, we
present a symbolic method to find simulation relation between such controllers.

Finally, in this thesis we use the concept of feature based equivalence to find
conformance of two AMS circuits over their simulation trace. We use a set of
auxiliary functions to compute special features (which may or may not be simple
functions of time and are not available directly from temporal trace) from the
simulation trace and monitor other properties with the help of modules from the
verification library. The proposed approach has been demonstrated using a family
of LDOs and BUCK Regulators as reference.

Keywords: Assertion, Passive-Online Verification Methodology, Labeled Tran-
sition Systems, Simulation Relation, Feature Based Equivalence, Co-Simulation.

xix

Contents

Certificate of Approval vii

Certificate ix

Declaration xi

Acknowledgement xiii

List of Abbreviations xv

List of Symbols xvii

Abstract xix

1 Introduction 1

1.1 Motivation and Objectives . 2
1.2 Summary of Contributions . 3

1.2.1 AMS Verification Library . 3
1.2.2 Verification of Simulation Relations 4
1.2.3 Feature based Online Conformance Checking 6

1.3 Organization of the Thesis . 7

2 Background and Literature Review 9

2.1 Assertions and Open Verification Library 9
2.2 Logic Languages STL and AMS-LTL 14
2.3 Equivalence and Simulation Relations 16
2.4 Algorithm for Equivalence Checking 21

2.4.1 Kanellakis-Smolka Algorithm 24
2.5 Concluding Remarks . 25

3 AMS Verification Library 27

3.1 Definitions and Preliminaries . 29
3.2 The Structure of AMS Verification Library 30

3.2.1 CaptureAndHold . 31
3.2.2 GenerateDelay . 32
3.2.3 ArithmeticOperator . 32
3.2.4 EventDetector . 33
3.2.5 EventDetector_Extended . 35
3.2.6 PredicateEvaluator . 36
3.2.7 PredicateEvaluator_Extended 38

xxi

xxii CONTENTS

3.2.8 BoolOperator . 39
3.2.9 GlobalOperator . 40
3.2.10 EventuallyOperator . 43
3.2.11 UntilOperator . 45
3.2.12 PredicateAssert . 48

3.3 Representative Verification Networks with AMS-VL Components 49
3.4 Tool Flow and Implementation Issues 55

3.4.1 Synchronization with the AMS Simulator 56
3.4.2 Spawning Threads for Overlapping Matches 59

3.5 Simulation Results . 62
3.6 Concluding Remarks . 63

4 Verification of Simulation Relations 65

4.1 Simulation Relation Finding Methodology 69
4.1.1 Formal Model of Computation 69

4.2 Methodology and Tool Flow to find Simulation Relation 76
4.2.1 Pre-Process Steps . 76

4.3 Concluding Remarks . 82

5 Feature based Equivalence Checking with AMS-VL 83

5.1 Different topologies for Online Conformance 84
5.2 Examples of Conformance Checking Networks 86

5.2.1 Example of Topology-I . 86
5.2.2 Example of Topology-II . 87
5.2.3 Example of Topology-III . 87
5.2.4 Example of Topology-IV . 89

5.3 Concluding Remark . 91

6 Conclusion 93

6.1 Summary of Achievements . 93
6.2 Future Work . 94

Appendices 95

A Sample Auxiliary Function Modules 97

A.1 Auxiliary Module to model Start-Up of BUCK and LDOs 97
A.2 Auxiliary Module to measure Frquency of PLL 100

B Testcases and Sample Properties of AMS-VL 103

B.1 Low Dropout Regulator (LDO) . 103
B.2 Voltage Mode Controlled BUCK Regulator 104
B.3 Sample Properties for Low Dropout Regulators 106
B.4 Sample Properties for BUCK Regulators 108
B.5 Sample Properties for Integrated Power Management Unit 109

Bibliography 113

List of Figures

1.1 Tool Flow of AMS-VL . 5
1.2 A Specification and Two Implementations 5
1.3 Tool Flow for Feature based Conformance Checking 7

2.1 TS2 simulates TS1 . 23
2.2 Before applying Kanellakis-Smolka’s Algorithm 24
2.3 After applying Kanellakis-Smolka’s Algorithm once 25

3.1 Temporal Trace of EventDetector . 35
3.2 Temporal Trace of EventDetector_Extended 37
3.3 Temporal Trace of PredicateEvaluator . 38
3.4 Temporal Trace of PredicateEvaluator_Extended 40
3.5 Temporal Trace of GlobalOperator . 42
3.6 Temporal Trace of EventuallyOperator . 44
3.7 Temporal Trace of UntilOperator . 47
3.8 Different Cases of PredicateAssert Module 50
3.9 EventDetector Deglitched Module . 52
3.10 Multiple Event Detection . 52
3.11 AMS-VL Realization of Example 3.3 53
3.12 AMS-VL Realization of Example 3.4 54
3.13 AMS-VL Realization of Example 3.5 55
3.14 Tool Flow of AMS Verification Library 55
3.15 Schematic of Example 3.3 . 56
3.16 LDO Test Case and associated Verification Networks 57
3.17 Timing Diagram of Example 3.6 . 58
3.18 Scenario for Property Checking in Parallel Threads 59

4.1 A Specification and Two Implementations 68
4.2 Specification LTS Annotated with Refinement Directives γ 70
4.3 Zone of Interest of Implementation PORVs 71
4.4 Paths in Specification and Implementation LTS 72
4.5 Pre-Process Step 1 . 77
4.6 Pre-Process Step 2 . 78
4.7 Simulation Relation Finding Tool Flow 81

5.1 Conformance of Two AMS Models / Circuits 83
5.2 Block Diagram of Topology-I . 84
5.3 Block Diagram of Topology-II . 85
5.4 Block Diagram of Topology-III . 85
5.5 Block Diagram of Topology-IV . 86

xxiii

xxiv LIST OF FIGURES

5.6 Monitoring Network for Example 5.1 87
5.7 Monitoring Network for Example 5.2 88
5.8 Monitoring Network for Example 5.3 88
5.9 Monitoring Network for Example 5.4 89
5.10 Schematic of Example 5.4 . 90

B.1 Block Diagram of an LDO Regulator Circuit [59]. 104
B.2 Output Voltage of LDO Regulator in Different Modes of Operation. . 105
B.3 Block Diagram of a Buck Regulator Circuit [47]. 105
B.4 Output Voltage of Buck Regulator Circuit [47]. 106

List of Tables

3.1 Different Parameters and their Context of Utilization 30
3.2 Broad Classification of AMS-VL Modules 31
3.3 Ports of CaptureAndHold Module . 32
3.4 Parameters of CaptureAndHold Module 32
3.5 Ports of GenerateDelay Module . 32
3.6 Parameters of GenerateDelay Module 32
3.7 Ports of ArithmeticOperator Module 33
3.8 Parameters of ArithmeticOperator Module 33
3.9 Ports of EventDetector Module . 33
3.10 Parameters of EventDetector Module 34
3.11 Ports of EventDetector_Extended Module 35
3.12 Parameters of EventDetector_Extended Module 36
3.13 Ports of PredicateEvaluator Module 37
3.14 Parameters of PredicateEvaluator Module 37
3.15 Ports of PredicateEvaluator_Extended Module 38
3.16 Parameters of PredicateEvaluator_Extended Module 39
3.17 Ports of BoolOperator Module . 40
3.18 Parameters of BoolOperator Module 40
3.19 Ports of GlobalOperator Module . 41
3.20 Parameters of GlobalOperator Module 41
3.21 Ports of EventuallyOperator Module 43
3.22 Parameters of EventuallyOperator Module 43
3.23 Ports of UntilOperator Module . 46
3.24 Parameters of UntilOperator Module 46
3.25 Ports of PredicateAssert Module . 48
3.26 Parameters of PredicateAssert Module 48
3.27 CPU Time for Simulations of Circuits 62
3.28 Description of the Testcases . 63

xxv

Chapter 1

Introduction

Modern Analog and Mixed Signal (AMS) circuits consist of both digital and ana-

log components. The verification environment for such circuits is mixed-mode and

verification methods that work efficiently in mixed-mode environment are needed.

Although, industry standard optimized mixed-mode simulators [5] that can sim-

ulate both analog and digital components have become available, but advanced

debugging constructs such as formal properties [48, 49, 50, 51, 52] and verification

libraries are still not ubiquitous in mixed signal designs.

In the last decade, there have been two significant directions towards improving

the state-of-art for mixed-signal verification. These are, (a) the use of behavioral

modeling and (b) the use of assertion and verification libraries. Behavioral models

have been found to be useful at various stages of AMS design flow. For example,

application engineers use behavioral models for demonstration purposes, designers

use them for design space exploration, verification engineers use behavioral models

for developing the environment for designs under test (DUTs), system engineers

use behavioral models for system level debugging. The need to maintain a certain

level of conformance / equivalence between these models is motivation for studying

equivalence checking methods in this domain.

The need for assertions and verification libraries in mixed-signal verification

and debugging has been acknowledged at various fora – in the industry as well

as the academia. Accellera [1], the industry consortium responsible for develop-

ing previous assertion languages such as SystemVerilog Assertions (SVA) [6] and

Property Specification Language (PSL) [7], have started an initiative towards de-

veloping the language standards for specifying mixed-signal assertions in a formal

way.

There are several important differences between formal properties for the dig-

ital domain and those for AMS domains. In the digital domain, properties are

expressed over Boolean signals and evaluated at well defined clock boundaries.

On the other hand, in the AMS domain, the signals of interest (such as voltages

and currents on various nets) are real valued and events can occur anywhere in

1

2 1. Introduction

time (that is, time is dense). Therefore integration of AMS properties into the core

fabric of AMS design verification has serious synchronization challenges between

the simulator and the property monitors.

Recently, a significant volume of research on assertion verification for mixed-

signal designs has been reported in [50, 51, 52]. These also led to the development

of prototype tool kits that integrate with standard AMS simulation platforms,

thereby augmenting them with assertion monitoring capabilities similar to the

digital EDA platform.

The focus of this thesis is on developing methods to meet some of the ver-

ification requirements stated above. The thesis presents new abstractions and

algorithms for checking conformance between the specification and an implemen-

tation of controllers for hybrid systems. The thesis also present a verification

library that can be used to monitor complex AMS behaviors and can be used also

to monitor feature based conformance between AMS models over simulation.

Section 1.1 presents the motivation of this work. Section 1.2 presents a sum-

mary of the contributions, followed by technical outlines of these contributions.

Section 1.3 presents the organization of the thesis.

1.1. Motivation and Objectives

It has been observed that assertions alone are not expressive enough to capture

complex AMS behaviors. Often it is easier to transform the signals (through aux-

iliary functions) to a different domain and express the desired property succinctly

over the transformed signals [51]. This approach requires a library of auxiliary

functions. Most verification engineers, without extensive training and experience,

find it difficult to use the appropriate combination of auxiliary functions and as-

sertions to develop the specifications for complex AMS properties. Further, with

little or no experience in linear temporal logic (LTL) [57] and signal temporal

logic (STL) [48], which forms the core fabric of AMS property languages like

AMS-LTL [52], most verification engineers find it difficult to write complex tem-

poral properties in above mentioned assertion languages. Hence, there is a need to

construct a repository of modules performing basic LTL operations and modules

for auxiliary functions which can be interconnected graphically to express complex

behavioral properties of AMS circuits. One of the objectives of this thesis is to

address this requirement.

In any design flow, the implementation is a refinement of the specification,

that is, the set of behaviors admitted by the implementation is a subset of the

behaviors admitted by the specification. Equivalence checking and simulation

relation finding is a very standard and well studied problem in the digital domain

where equivalence is defined in terms of logic and and there exists a rich body of

1.2. Summary of Contributions 3

literature on computing sequential equivalence [23, 24, 26, 44, 45] and simulation

relations [40, 58] between finite state machines. In the AMS domain, conformance

is relevant with respect to specific features, ranging from simple region containment

predicates to very complex behaviors (not necessarily in the time domain). A very

important component of modern hybrid systems (like AMS circuits) is the digital

controller which interacts with analog components and actuates their behaviors.

Such controllers form an important class of structures that can have predicates

over real variables (PORVs) as inputs in addition to propositions. It is important

to formally verify whether the implementation of a controller is a refinement of

the model of its specification. Another objective of this thesis is to study formal

simulation / refinement relation for such controllers.

The objective of this thesis can therefore be articulated in terms of the following

problems, namely (a) to design a library of modules which can be used to compose

graphically a wide range of property monitors of varying complexity with ease and

can be interfaced with auxiliary functions seamlessly, (b) to propose a method

to formally compute simulation relation between abstractions of controllers for

hybrid systems and (c) to leverage the verification monitors to check feature based

conformance between two AMS circuits or models during simulation.

1.2. Summary of Contributions

The thesis presents the following three contributions :

• A verification library consisting of basic parametrized modules which can be

connected graphically to compose property monitors for verification of AMS

circuits over simulation.

• A formal symbolic method to find simulation relation between predicate

labeled abstraction of digital controllers for hybrid systems.

• A method for feature based conformance checking between two AMS cir-

cuits / models over simulation online, leveraging the verification library and

auxiliary modules.

The following three subsections outline the major aspects of these contributions.

1.2.1. AMS Verification Library

This work presents the genesis of a library of checker modules that can be con-

nected graphically to build verification networks for complex properties of AMS

circuits. In this approach we have brought together the advantage of graphical

composition of verification networks from Open Verification Library (OVL) [2] of

4 1. Introduction

the digital domain and the real time signal handling capacity of Signal Tempo-

ral Logic (STL) [48, 49] to create a toolbox for verification of AMS circuits over

a simulation trace. We call it a Passive Online verification library - (a) online

because the checkers check the simulation trace online (that is, as soon as it is

generated by the simulator) and (b) passive, because the verification network built

from the checkers do not modify the behavior of the circuit or the testbench. The

contributions of this approach are as follows :

1. We have proposed a library of parameterized modules which can be intercon-

nected graphically on a schematic to create verification networks for proper-

ties of AMS Circuits. A glimpse of the modules is given in the Table 3.2. We

have shown that the library modules can be interfaced easily with suitable

auxiliary functions for verifying AMS properties in the time domain.

2. The proposed library modules handshake with AMS simulators and can place

additional simulation points near the events of interest. We have shown that

the overhead incurred during simulation for adding these extra modules for

verification is of the order of 7%-10% for large industrial test cases like

Buck regulators and integrated circuit netlist. The large simulation time for

these AMS circuits always supersedes the additional time incurred due to

the inclusion of the AMS-VL modules.

Some features of the library are :

1. It has been shown that not only time domain properties but frequency do-

main properties can be verified with the library modules with the help of

auxiliary functions. The modules can be treated as parameterized black

boxes in the graphical verification framework by adjusting different param-

eters (as shown in Figure 3.13).

2. The library modules can be used to capture certain properties which are

difficult to express in logic languages like LTL and STL as they can face

explosion in the length of formula. Also, we have shown that the AMS-VL

monitor network can contain cycles for expressing interesting properties.

Figure 1.1 shows the tool flow for AMS-VL.

1.2.2. Verification of Simulation Relations

In a multi-stage design cycle, it is the usual practice to check conformance be-

tween the golden model (hereby referred as specification) and the implementation.

For robust satisfaction of specification by implementation it is always required

that all behaviors of implementation are contained in the admissible specification

behaviors. This work presents a symbolic simulation relation finding algorithm

1.2. Summary of Contributions 5

Verification
Report

Design

Translation

Translation

Interconnection

AMS

Library
Verification

Auxiliary

Library

Simulation
with

AMS Simulators

Specification

Auxiliary
Functions

Specification

DUT

Testbench
Verification

Network

AMS
Properties

Instantiation
and

Cascading

Parameter
Specification

Figure 1.1: Tool Flow of AMS-VL

q0/ Offstart

q1/ On

w < 10

w ≥ 10

w > 85

w ≤ 85

(a) Specification

p0/ Off,1start p1/ On,1

p2/ Off,2 p3/ On,2

w < 15

w ≥ 15 ∧ ¬a

w
≥

15
∧
a

w > 80

w ≤ 80 ∧ b

w
≤

80
∧
¬
b

w ≥ 15

w
<
15

w
>
80

w ≤ 80

(b) Implementation 1

p0/ Off,1start p1/ On,1

p2/ Off,2 p3/ On,2

w < 5

w ≥ 5 ∧ ¬a

w
≥

5
∧
a

w > 80

w ≤ 80 ∧ b

w
≤

80
∧
¬
b

w ≥ 5 ∧ ¬c

w
<
5

w
>
80

w ≤ 80

(c) Implementation 2

Figure 1.2: A Specification and Two Implementations

between implementation and specification controllers of hybrid systems. We have

extended the classical algorithm of Kanellakis-Smolka (KS) [44, 45] for finding

simulation relation to our problem domain. In Figure 1.2, we show one specifica-

tion and two candidate implementations for a water level controller automaton.

Implementation of Figure 1.2(b) satisfies the design intent of Figure 1.2(a) more

robustly with some tolerance for aberrations in reading the water level but the

implementation of Figure 1.2(c) is not acceptable. Implementation-1 never allows

the water level to go beyond the safe limits of 10 units and 85 units as required

in the design intent. But Implementation-2 allows the water level to go as low as

5 units while going from Off to On state. Hence, Implementation-1 is acceptable

but Implementation-2 is not. Our objective is to formally define conformance such

that the first controller implementation is decided to be correct and the second is

not. Therefore we require techniques for finding simulation relations over pred-

icate labeled transition systems. As demonstrated in the above water controller

6 1. Introduction

example, the Predicates Over Real Variables (PORVs) used in the specification

(like w < 85, w > 10) and in the implementation (like w < 80, w > 15) are not

necessarily same, although they are defined over the same set of real variables.

An implementation is never a verbatim translation of specification. An imple-

mentation interacts with many non-ideal situations which a specification does not

account for. Hence, to make sure that implementation never violates specifica-

tion even under strongest non-ideal situations, for the specification controller we

need a refinement directives that indicates the admissible directions in which input

PORVs can be strengthened or relaxed in implementation to cope with non-ideal

environments. For example, in Figure 1.2(a), the PORV labeling the transition

from Off to On state i.e w < 10 can be weakened to w < 15 in an implementation

(to allow aberration for reading real valued variable w) but the PORV w ≥ 10

labeling the self loop at the Off state can be strengthened to w ≥ 15 as shown

in Figure 1.2(b). This does not follow automatically from the automaton of Fig-

ure 1.2(a) and needs to be explicitly specified by the user.

In Chapter 4, we have proposed such a symbolic simulation relation finding

methodology. We have shown the necessary transformation steps required to re-

duce the problem in hand so that we can use the KS algorithm.

1.2.3. Feature based Online Conformance Checking between

AMS Circuits

In this work we propose a method for conformance checking of two AMS circuits

/ models over simulation. Every AMS circuit shows both continuous and discrete

dynamics. Hence, the behavior of the circuit can be divided into some modes of

operation over its terminal voltages and currents. There exists certain properties /

features which uniquely characterize a mode of operation of an AMS circuit. These

features need not to be temporal always and may need to be derived with some

additional calculations over simulation trace with the help of auxiliary modules.

In a multi-cycle design procedure, it is required that the refined design conforms

to its predecessor w.r.t certain features rather than everywhere of its operation.

Further as we explained in introduction, a certain level of conformance is necessary

between the behavioral models of AMS circuits used by different engineers for

different purposes.

For example, we have a behavioral model of Buck regulator in Verilog-AMS [3]

which acts as a specification and an implementation of the same Buck regulator

as a circuit. One of the feature based on which we seek conformance between the

model and the circuit is the switching frequency of oscillation in the PWM mode of

operation. We use the AMS-VL modules along with necessary auxiliary modules

to translate such definition of conformance between two AMS models / circuits to

1.3. Organization of the Thesis 7

Auxiliary
Function
Modules

Testbench
Implementation

(Circuit)

Specification
(HDL model)

Verification
Networks
with AMS-VL

Equivalence
Report

Figure 1.3: Tool Flow for Feature based Conformance Checking

a monitor network which can check the conformance online over simulation.

The proposed scheme has been shown in the Figure 1.3. The contributions are

as follows :

1. We have defined several topologies to find feature based equivalence of two

AMS circuits / models over simulation run. The reason, for which this kind

of conformance is important in AMS domain, has been explained.

2. With the help of several examples we have explained the way AMS-VL mod-

ules and auxiliary modules can be used to translate the definition of con-

formance between two AMS models into a monitor network. The monitor

network keeps checking the simulation trace continuously and generates the

conformance report. Once constructed, such monitor networks can be stored

in a repository for future re-use.

1.3. Organization of the Thesis

The rest of the thesis is organized in the following chapters. A summary of the

contents of the remaining chapters are as follows :

Chapter 2 : This chapter contains a detailed study of the background

required for the thesis and survey of relevant research.

Chapter 3 : This chapter presents a passive online verification methodology

of AMS circuits with the help of proposed AMS-VL library and auxiliary

functions. We explain the modules, their syntax and semantics, working of

the modules with several examples, implementation issues and our approach

to address those issues.

Chapter 4 : This Chapter presents a formal symbolic method for con-

formance checking of predicate labeled abstraction of digital controllers of

8 1. Introduction

hybrid systems. We have explained the transformation steps required to map

the proposed simulation relation finding problem to the simulation relation

finding algorithms of digital domain.

Chapter 5 : This chapter presents a feature based online conformance

checking methodology for two AMS circuits / models over simulation capi-

talizing the online monitoring capability of AMS-VL and auxiliary modules.

Chapter 6 : In this chapter, we summarize with the conclusions on the

contributions of this thesis and list some possible future scopes of this work.

Chapter 2

Background and Literature Review

The primary aim of the chapter is to provide some background concepts that are

necessary for the foundation of this thesis. This chapter gives a brief overview

of the assertion languages and the verification library used in the digital domain

verification. Also, it gives a glimpse of the assertion languages of AMS domain.

It presents some relevant literature in the area of equivalence checking of AMS

circuits and hybrid systems and describes a classical algorithm to find simulation

relation in digital domain which will be the basis for our proposed algorithm to

find simulation relation of the controllers of hybrid systems.

The chapter is organized as follows :

Digital domain assertion languages like LTL has been explained in the Sec-

tion 2.1. The Open Verification Library has been explained in the same section.

In the Section 2.2, AMS extensions of assertion languages like MITL, STL and

AMS-LTL has been described with the help of suitable examples. Section 2.3 gives

a brief description of the work reported in the domain of AMS circuit equivalence

checking. Section 2.4 describes the classical simulation relation finding algorithm

due to Kanellakis-Smolka in detail along with necessary terminologies.

2.1. Assertions and Open Verification Library

Assertions refer to the statements that have Truth associated with them. For

example, the assertion the output voltage of the circuit shall cross 3V may have

true or false value depending upon the prior knowledge one may posses about

the circuit. One may associate the notion of time and can construct temporal

assertions. For example, the above assertion can be modified in this way : the

output voltage of the circuit shall cross 3V within 10 µs after reset is disabled. In

this work we discuss assertions from the viewpoint of circuit designers - especially

mixed-signal circuit designers.

Designs are made to meet certain specifications. Verification methods try to

validate the designs against those desired specifications. But the inherent ambi-

guity of English language lead to mis-interpretation of the desired properties and

9

10 2. Background and Literature Review

hence may lead to incorrect designs. One of the main aim of formal assertions is

to avoid such ambiguities. This work focuses on methods that may be used to

specify behaviors of systems involving both discrete and continuous variables /

signals.

In digital domain, verification techniques are used for decades. There are two

ways in which verification is carried out in digital domain :

1. Formal Verification

2. Dynamic Assertion based Verification

The former uses formal verification techniques in order to validate whether

all possible execution of the system satisfies the specification whereas the later

technique simulates the system with a particular testbench and validate certain

traces only. Assertions are widely used in simulation based verification for mon-

itoring complex temporal behaviors in digital integrated circuits. Assertions lan-

guages like Property Specification Language (PSL) [7] and SystemVerilog Asser-

tions (SVA) [6] derive their syntactic fabric from temporal logics, like Linear Tem-

poral Logic (LTL) [57]. Propositional temporal logic extend Boolean logic by al-

lowing us to relate the truth of Boolean propositions in different time worlds. The

syntax of LTL [57] is defined over a set of atomic propositions, AP, as follows:

• Each p ∈ AP ∪ {⊤} is a LTL formula, where ⊤ denotes true.

• If f and g are LTL formulas, then so are ¬f , f ∧ g, X f and fUg.

X represents the next-time operator and U represents the until operator. The

formula X f is true in a time world iff f is true in the next time world. The formula

fUg is true in a time world iff g is true in some future time world and f is true

in all time worlds in between. LTL forms the backbone for assertion language

standards like SVA and PSL adopted by the industry. The task of extending

assertion languages towards capturing Analog and Mixed-Signal (AMS) behaviors

is being seriously pursued by the research community [48, 49, 50, 51, 53] as well

as industry consortia [1]. However, all known formal techniques goes into serious

capacity limitations even for small AMS systems. In this chapter, we elaborate on

different existing formal specification languages relevant for systems that involve

both continuous and discrete signals.

The main task for property verification are as follows.

• To specify the design intent in terms of formal specification languages.

• To verify them on the implementation.

2.1. Assertions and Open Verification Library 11

This chapter summarizes different existing formal specification languages that

are relevant to specify systems involving continuous and discrete signals. We take

the first example from the circuit domain.

Example 2.1 : Consider the following specification of a circuit.

1. If the output of the circuit is greater than 3V and reset is asserted then

eventually the output voltage will become less than 1V.

2. If input voltage is greater than 2V and enable is asserted, then eventually

the output will become greater than 1.5V.

We may consider a simple extension of LTL allowing relational Predicates Over

Real Variables (PORV) [48, 53] as atomic propositions. This simple extension

facilitate to express the requirements shown in Example 2.1 in the following way.

1. (Vout > 3V) ∧ reset⇒ F(Vout < 1V)

2. (Vin > 2V) ∧ enable⇒ F(Vout > 1.5V)

We can associate the notion of time with the temporal operators to come up

with real time temporal specification.

Example 2.2 Consider the modified properties from Example 2.1

1. If the output of the circuit is greater than 3V and reset is asserted for 10µs,

then eventually the output voltage will become less than 1V.

2. If input voltage is greater than 2V and enable is asserted for 5µs, then even-

tually the output will become greater than 1.5V.

Early attempts towards developing assertion languages for the AMS domain

have largely been limited to the extensions which allow the use of PORVs [48, 53]

and interpret the temporal operators according to the dense real time semantics

as opposed to discrete real time semantics [17, 18, 19]. For example, a property

which says that signal y is asserted between 3 to 5 time units of signal x being

asserted may be written in Metric Temporal Logic (MTL) [18] as:

G(x ⇒ F[3,5] y)

In MTL the signals x and y are Boolean and the future operator, F[3,5] is

interpreted over discrete time-steps, that is, it is expected that if x is high at

time-step t, then y will be high in time-step t+ 3 or t+ 4 or t+ 5. Any transient

12 2. Background and Literature Review

rise and fall of y between these time-steps will not be considered. On the other

hand, consider an AMS property which says that if the voltage V (in) of a battery

charger is above 5V, then within 3 to 5 seconds the voltage V (out) of the charger

will be above 3V. This can be expressed by extending MTL with PORVs as follows:

G((V (in) > 5V) ⇒ F[3,5] (V (out) > 3V))

In this property, V (in) > 5.0 and V (out) > 3 are PORVs which are natural

extensions of atomic propositions like x and y in the previous property. Moreover,

the future operator, F[3,5] is interpreted over dense time which admits the fact

that the truth of the PORV, V (out) > 3, may change transiently at any point of

time between 3 and 5 seconds, and may not be visible at some clock boundary. In

literature, several such dense time logics have been studied, which include Timed

Propositional Temporal Logic (TPTL) [19], Metric Temporal Logic (MTL) [18],

Metric Interval Temporal Logic (MITL) [17], to reason about Boolean signals

over dense time. Analog Specification Language (ASL) was presented in [65] for

verifying complex static and dynamic circuit properties like oscillation and start-

up time. The authors of [30] proposed an extension of CTL to verify transient

response of analog circuits offline.

The properties mentioned in Example 2.2 cannot be expressed succinctly with

the help of the logic languages discussed so far. In Section 2.2, we show that

with the help of Signal Temporal Logic (STL), an extension of MITL, the above

properties can be encoded.

The Open Verification Library (OVL) [2] provides designers, integrators and

verification engineers with a single, vendor-independent interface for design valida-

tion using simulation, hardware acceleration, formal verification and semi-/hybrid-

/ dynamic-formal verification tools. It is interesting to note that the OVL was a

reasonable popular alternative to the use of assertions in the digital domain. OVL

was accepted into industrial practice primarily because mixed-mode simulation

was in its infancy and therefore AMS simulators did not support assertion lan-

guages like Open Vera Assertions (OVA) [9] and SystemVerilog Assertions (SVA)

[6]. Another reason for the acceptance of OVL was that verification engineers

found it more convenient to graphically compose OVL modules to develop complex

monitors as compared to developing assertions which capture the same behavior.

The OVL is composed of a set of assertion checkers that verify specific properties

of a design. These assertion checkers are instantiated in the design establishing a

single interface for design validation. OVL assertion checkers are partitioned into

the following classes:

• Combinational assertions - behavior checked with combinational logic.

2.1. Assertions and Open Verification Library 13

• 1-cycle assertions - behavior checked in the current cycle.

• 2-cycle assertions - behavior checked for transitions from the current cycle

to the next cycle.

• n-cycle assertions - behavior checked for transitions over a fixed number of

cycles.

• Event-bound assertions - behavior is checked between two events.

Each OVL assertion checker has its own set of parameters. A few parame-

ters common to all checkers are as follows: severity_level, property_type, cover-

age_level, gating_type etc.

An example of a 1-cycle assertion checker is ovl_always. The ovl_always

checker checks its input - a single-bit expression test_expr at each active edge

of the clock. If test_expr is not TRUE, a violation occurs and prints an error

message.

An example of a 2-cycle assertion checker is ovl_quiescent_state. It has three

inputs sample_event, state_expr, check_value other than clock, reset and enable.

At every active edge of clock it checks whether the single bit expression sam-

ple_event has transitioned to TRUE i.e. FALSE on the previous clock edge and

TRUE on the current clock edge. If so, it checks whether the current value of

state_expr, equals that of check_value. If these values are not equal the assertion

fails.

An example of an n-cycle assertion is ovl_frame. It ensures that when a spec-

ified start event is TRUE, then an expression must not evaluate TRUE before a

minimum number of clock cycles and must transition to TRUE no later than a

maximum number of clock cycles. A similar property checker is ovl_width which

ensures that when value of an expression is TRUE, it remains TRUE for a mini-

mum number of clock cycles and transitions from TRUE no later than a maximum

number of cycles.

There are event bounded assertion checkers like ovl_win_change which ensures

that the value of an expression changes in a specified window between a start event

and an end event. The n-cycle and event bounded assertions are the ones which

are very relevant in the Analog Mixed Signal domain.

OVL checkers are instantiated as modules in the digital designs. OVL has

different variants for integration with Verilog, VHDL and SVA. Today, analog be-

haviors are not supported in OVL. We propose such a library of checkers following

the line of OVL which can check properties over the analog behaviors. We describe

such an approach in the Chapter 3.

14 2. Background and Literature Review

2.2. Logic Languages STL and AMS-LTL

In [48] an extension of MITL [17], called Signal Temporal Logic (STL), was pro-

posed which allows PORVs along with the dense timed temporal operators for

specifying desired properties of continuous signals. The logic is based on a bounded

subset of the real-time logic MITL, augmented with a static mapping from con-

tinuous domains into propositions. From formula in this logic the authors created

automatically property monitors that can check whether a given signal of bounded

length and finite variability satisfies the property. A prototype implementation

of this procedure was used to check properties of simulation traces generated by

Matlab/Simulink.

Definition 2.2.1 [Syntax of STL] : An STL formula ϕ is defined inductively

by the following grammar :

ϕ ::= ⊤ | p | ¬ ϕ | ϕ ∧ ϕ | ϕ UI ϕ

We have AP ∪ APA as the finite set of the atomic propositions, where AP is

the set of the Boolean propositions and APA is the set of PORVs. In the above

grammar, p ∈ AP∪APA and I is an interval. If X = {x1, x2, . . . , xn} be the set of

real variables, then a PORV, p, can be represented as, p ::= f(r1, r2, . . . , rn) ∼ 0,

where f is a mapping f : Rn → R, and ∼ is a relational operator from the set

{≥, >}. In this work, we consider only linear maps for the predicate mapping f .

Other relational operators can be derived using ∼ and the propositional connec-

tives.

Now we can write the properties of Example 2.2 in the following way using

real time temporal operators :

1. (Vout > 3V) ∧ G[0,10µ](reset)⇒ F[0,10µ](Vout < 1V)

2. (Vin > 2V) ∧ G[0,5µ](enable)⇒ F[0,5µ](Vout > 1.5V)

We consider following two examples to elaborate STL further.

Example 2.3 : If enable is low, vout will be less than 0.2V within 10µs. - This

can be expressed by the following safety requirement ϕ in STL.

ϕ ≡ ¬enable⇒ F[0.10e−6](vout < 0.2)

Example 2.4 : If enable is held low for at least 2µs then vout will become less

than 0.2V within 10µs. - We encode this by the following safety requirement ϕ in

STL.

ϕ ≡ G[0.2e−6](¬enable) ⇒ F[0.12e−6](vout < 0.2)

2.2. Logic Languages STL and AMS-LTL 15

In [51, 52], authors extended STL to derive AMS-LTL which introduces the

notion of event. In [55], the author discussed the notion of an event which requires

the past MITL operator since to express an event. In AMS-LTL, event is expressed

in future temporal logic only. STL introduced PORV to allow predicates over

signals like voltage, current etc, although many real world behaviors are still not

expressible in STL. For example, consider the following requirements.

1. Whenever enable goes high, within 10µs, V(out) goes above 2V (a property

related to rise time).

2. The delay between V(a) going above 0.1V and above 0.85V is less than the

delay between V(a) going above 0.85V and above 0.95V (a property relating

rise time and steady state time).

Though such requirements are very common while describing timed behaviors

of mixed-signal systems, they are certainly not expressible in STL, because they

involve events and comparison between time intervals. To be able to express such

requirements, the authors extend STL to derive AMS-LTL which introduces the

notion of event in the logic formulas.

Definition 2.2.2 [Syntax of AMS-LTL] : The syntax of AMS-LTL formula ϕ

is defined recursively by the following grammar rules.

ϕ ::= ⊤ | p | E | ¬ ϕ | ϕ ∧ ϕ | ϕ UI ϕ

E is an event to express change of truth of propositions and is defined by the

following grammar rules.

• E ::= @+(B) |@−(B) | @(B)

• B ::= p | ¬B | B ∧ B

A few safety requirement properties are expressed below in AMS-LTL :

Example 2.5 : Whenever va crosses 1.3V in the rising direction, within 0.5µs

the system should flag failure by asserting c.

This is a safety requirement which can be expressed in AMS-LTL in following way.

ϕ ≡ @+(va > 1.3)⇒ F[0,5.0e−7](c)

Example 2.6 : If va crosses 1.2V in the rising direction, then it should remain

above 1.2V for at least 20ns.

This is again a safety requirement. The property can be encoded in to AMS-LTL

as follows :

16 2. Background and Literature Review

ϕ ≡ @+(va > 1.2)⇒ G[0,2.0e−8](va > 1.2)

Though these recent AMS extensions of temporal logics have a neat semantics

which easily follows from the semantics of the underlying temporal logic, the

encapsulation of real variables within analog predicates severely constrains the

expressibility of AMS behaviors. Researchers have studied the use of auxiliary

AMS functions and Auxiliary State Machines with the assertion language [50, 51]

to partially address this limitation. For example, consider the following property:

Example 2.7 After the enable signal becomes high, the output voltage, V (out),

will rise following the curve f(t) = (1 − ect) with a tolerance of ǫ for the next

20µs. (f need not to be a simple function of time only, it can have dependencies

on other signals and / or can be a complex function of time. For simplicity of

understanding, we kept f as a function of time only.)

In order to monitor this property, the function, f(t), has to be encoded (say, in

Verilog-AMS) as an auxiliary function in the simulation framework. This auxiliary

model will have to be triggered by the enable signal. Let z denotes the output of

this auxiliary model (that is, z represents f(t)). Now, the required property can

be expressed using z as follows:

G(enable ⇒ G[0,20µs] (|V (out)− z| < ǫ)

This example shows that for capturing quite simple AMS behaviors, the veri-

fication engineer must use a combination of auxiliary functions and the assertion

language. This can potentially be quite confusing at times for the verification en-

gineer. Researchers have also studied synchronization of AMS assertions with the

AMS simulators in [52] to guarantee that the truth of the assertions are evaluated

correctly. The researchers have analyzed impact on the AMS simulator due to the

insertion of additional simulation points by the assertion checker to monitor truth

of the properties. Insertion of too many additional simulation point may degrade

the performance of the simulator considerably. For example, using a sampling

clock of fine granularity as advocated in [53] is not a good option in practice and

can degrade simulator performance severely.

2.3. Equivalence and Simulation Relations

Equivalence checking is a problem where we are given two system models and are

asked whether these systems are equivalent with respect to some notion of confor-

mance or functionally similar w.r.t their input / output behavior. Verification can

be based on specific properties like transient or steady state response properties,

in time domain or frequency domain. Such conformance relation between designs

2.3. Equivalence and Simulation Relations 17

is classically done through exhaustive testing by proving that two expressions are

equivalent which can be difficult for any large circuit. On the other hand the

symbolic reasoning methods can prove or disprove simulation relation or equiva-

lence using the systematic decision procedures over all the valid range of inputs

described symbolically. Therefore, it is possible to compare circuits on the same

level of abstraction as well as on different levels, e.g. SPICE netlists versus analog

behavioral models, behavioral vs. macro model or macro model vs. device level

etc.

In the digital domain, formal methods work on logical representations of the the

finite state systems. Therefore when we refer to equivalence checking between two

digital designs in verification perspective, we essentially mean logical equivalence

between the state transition relations of the two. On the other hand the notion

of equivalence between two analog circuits is more involved. The most primitive

definition of conformance between two analog circuits as appears in [37], is in terms

of matching the output of the two models within acceptable limits of tolerance

under all input scenarios. Typically, it is a much stringent condition for equivalence

in practice because the equivalence may be desired with respect to some features

and we may not be interested in which way circuits behave in some other scenarios.

Therefore, the definition of formal equivalence checking between Analog-Mixed

Signal (AMS) models requires the ability to specify behavioral properties with

respect to which we care about equivalence.

Formal Equivalence checking between AMS models has been a subject of con-

siderable research focus in recent times [37, 64]. In [21], the authors proposed a

method for applying equivalence checking between two designs (e.g. specification

and implementation) of analog systems described by their linear transfer function.

The main idea was based on the discretization of the transfer functions to the

Z-domain using bilinear transformation and hence the design can be expressed in

terms of discrete time components and encoded into Finite State Machine (FSM)

representation like Binary Decision Diagram (BDD)s. The verification problem

that was attacked in this paper can be stated as follows: “the transient behav-

ior of the implementation mimics that of specification iff for any initial state of

the specification, there exists a state in the implementation such that the FSMs

representing the two circuits produce identical output sequences for all input se-

quences. The ideas of [21] have been extended in [61] in the following manner.

Given the transfer function description of both the specification and the imple-

mentation, verify the conformance of the magnitude and the phase response of

the implementation against the specification over the desired range of frequency.

The equivalence problem in [61] has been modeled as an optimization problem

by ensuring the implementation response is bounded within an envelope around

18 2. Background and Literature Review

the specification under the variation of the parameter. The conformance [61] is

defined using the notion of different frequency bands product response functions

(PRFs) of both design models and which serve as objective functions for the global

optimization routine. Conformance checking with parameter variations was also

investigated in [38], where the authors present an equivalence checking method

for linear analog circuits to prove that an actual circuit implementation fulfills

a specification in a given frequency interval for all parameter variations. The

main idea of the procedure is to compare by inclusion the value sets of transfer

functions of specification and implementation. To ensure soundness, the authors

choose an over-approximation for the implementation function while an under-

approximation is chosen for the specification transfer function. Comparing [21]

and [61], we see that in the first work the author trades accuracy for practicality.

They adapt BDD based equivalence checking for the analog systems. This comes

at the cost of precision which is affected by mainly due to discretization proce-

dure. In contrast, the authors of [61] insist on soundness by checking that the

implementation of the behavior is included in the specification behavior.

While the previously mentioned work are concerned with frequency domain be-

havior, others focus on time domain verification problem. In [39], an equivalence

checking approach based on qualitative comparison between two representations

of the non-linear analog system is presented. As direct comparison of vector fields

for non-linear analog systems is usually not possible, therefore the authors pro-

pose to apply non-linear transformations on the sample state spaces to make the

comparison possible. Another equivalence checking approach was proposed in [60]

for verifying VHDL-AMS designs. The idea consisted of combining equivalence

checking, rewriting systems and simulation into a verification environment. The

methodology consists of partitioning the specification and implementation codes

into digital, analog and data converter components. Digital components are ver-

ified using classical equivalence checking whereas analog specification and imple-

mentation are simplified using pattern matching. This syntactic method can only

be performed on simple designs where rewriting techniques can be easily applied.

In [36], authors have shown that the model checking methods developed for

the hybrid dynamic systems may be applied for analog circuit verification. Finite-

state abstractions of the continuous analog behavior are automatically constructed

using the polyhedral outer approximations to the flows of the underlying continu-

ous differential and difference equations. The authors did not discretize the entire

continuous state space and their abstraction captures the relevant behaviors for

verification in terms of the transition between states as a finite state machine

in the hybrid system model. They have shown their approach on a delta-sigma

(∆−Σ) modulator. In [54], researchers have proposed a verification methodology

2.3. Equivalence and Simulation Relations 19

of analog designs in the presence of process variations and noise with the help

of automated theorem proved called MetiTarski [8]. They have proposed the use

of stochastic differential equations to model the designs. The proposed approach

has been illustrated on an inverting op-amp integrator and a band-gap reference

bias circuit. The authors of [31] have proposed two methods to obtain closed

form solutions to the model of the circuit - one is based on the piecewise linear

modeling and the inverse Laplace transform and the other is based on small-signal

analysis and transfer function theory. They transform the properties to be verified

into a set of inequalities involving analytic functions and used MetiTarski to prove

them automatically. In [35], the authors have proposed a verification approach

of the DC and low frequency behavior of synthesized analog designs containing

linear components and components whose behaviors can be represented by piece-

wise linear models. A formal model of the structural description of synthesized

design is extracted from the netlist provided by the synthesis tool in terms of

characteristic behaviors of the components and the various current and voltage

laws. For the synthesized model to be correct it must conform to a formal model

extracted from the user given behavior specification. Circuit implementations

and the expected behavior are both modeled in PVS [11] higher-order logic proof

checker, as linear functions and the PVS decision procedures are used to prove

the conformance. In [67], the author has proposed a method where the models

of AMS circuits written in VHDL-AMS [12] are converted into Labeled Hybrid

Petri Net (LHPN) which includes Boolean signals to represent digital circuitry

and continuous variables to model voltages and currents in the analog circuitry.

The properties to be verified are specified as temporal logic formulae using timed

CTL (TCTL) generated from the assert statements of VHDL-AMS automatically.

These properties are then checked using a LHPN model checker based on SMT

solver theory. The authors of [14] have presented an approach to verify locking of

charge-pump phase-locked loops by performing reachability analysis on a behav-

ioral model of the circuit. Researchers have considered different piecewise linear

(PWL) models for nonlinear devices in the context of formal DC operating point

and transient analyses of analog circuits in [69]. PWL models can be encoded

as a verification problem as constraints in linear arithmetic which can be solved

efficiently using modern SMT solvers. The authors found out the most suitable

PWL modeling approach for formal verification by experimentally evaluating the

performance of various PWL models in terms of running time and accuracy for

the DC operating point and transient analyses of several analog circuits. The

authors in [27] have used statistical model checking approach to verify proper-

ties of AMS circuits. They have also proposed a logic which can express desired

properties in temporal as well as in frequency domain. The authors have demon-

20 2. Background and Literature Review

strated the applicability of their method on a third order delta-sigma (∆ − Σ)

modulator and reported significant gain in terms of the running time compared

to previously reported approaches in literature. A novel methodology based on

Boolean satisfiability (SAT) has been proposed for formulating a SPICE-type cir-

cuit simulation problem as satisfiability problem in [66]. The authors start with a

circuit level netlist, capture the non-linear behavior of the circuits at the transis-

tor level via conservative approximations and transform the simulation problem

into a search problem that can be exhaustively explored via SAT solver. They

have also presented algorithms for abstraction refinement and smart interval gen-

eration to improve the computational efficiency of the proposed solution scheme.

The ideas have been implemented in a tool called fSpice. In [28], the authors

have demonstrated an extension of formal verification methodology in order to

deal with time-domain properties of analog and mixed-signal circuits whose dy-

namic behavior is described by differential algebraic equations (DAEs). They have

proposed an algorithm for approximating sets of reachable sets for dense-time con-

tinuous systems to deal with DAEs and applied it to a biquad low-pass filter. To

analyze more complex circuits, they resorted to bounded horizon verification and

techniques from optimal control theory. Generic monitor automata was proposed

in [34] to facilitate the application of hybrid system reachability computations to

characterize time domain features of oscillatory behavior, such as bounds on the

signal amplitude and jitter. The approach is illustrated for a nonlinear tunnel-

diode circuit model using PHAVer [10], a hybrid system analysis tool that provides

sound verification results based on linear hybrid automata approximations and in-

finite precision computations. In [33], the authors have reported a novel approach

combining forward and backward reachability while iteratively refining partitions

at each step to verify properties of oscillator circuits which needs cyclic invari-

ants. They have also reported a considerable reduction in memory and runtime

and illustrated their approach by verifying the limit cycle oscillation behavior of

a third-order model of a differential VCO circuit. In [29], a method based upon

Rapidly-exploring Random Trees (RRT) (a well known probabilistic path/motion

planning technique in robotics with a special property that allows to guarantee a

good coverage quality) has been proposed to construct a simulation-based method

for validating AMS circuits. The authors investigated conditions for preserving

this coverage property and develop a variant of RRTs which is more time-efficient.

They have implemented the ideas in a prototype tool that can handle high di-

mensional hybrid models. The authors in [46] have discussed methodologies for

generation of abstract models for AMS circuits and simulation aided verification

for the same.

In all the above mentioned works, the methods mostly focus on equivalence

2.4. Algorithm for Equivalence Checking 21

checking between analog circuits but they do not address the equivalence checking

of AMS designs with extensive use of digital logic (like battery charger). More

recently, researchers have started exploring equivalence checking for large AMS

circuits [63], given that the methods for analog equivalence checking do not scale

to AMS designs of large size. Another recent work [43] attempts to leverage

equivalence checking and coverage analysis methods from the digital domain after

discretizing the state space of the analog part of the circuit. This approach is

very promising since state space discretization is unavoidable in AMS equivalence

checking and being able to leverage existing tools from the digital domain enables

the unification of the equivalence checking of both digital and analog components.

An important component of AMS circuits is its digital brain or the digital

controller. The digital controller periodically senses the signals of the analog

component and actuates control on the basis of the samples it senses. Typically

actuation of control takes place at the crossing of some thresholds for one or more

real valued signals. For example a Low Dropout Regulator (LDO) goes to short

circuit mode when its output current exceeds the short-circuit current threshold.

Besides checking the equivalence of analog components, AMS equivalence check-

ing methods must also consider the equivalence between the digital controllers,

particularly when they actuate control at possible different thresholds. This work

will focus on developing formal methods to check whether the implementation of

the digital controller of AMS circuits indeed meets the specification or in other

words to find if there exists a simulation relation between specification and the

implementation of the digital controller of the AMS circuits..

The problem of finding simulation relation between implementation and specifi-

cation is essentially a sequential equivalence checking [23, 24] problem where unlike

combinational equivalence checking, the state mapping between implementation

and the specification is not known a priori. There exists two classical equivalence

checking algorithm in the digital domain namely Kanellakis-Smolka’s Algorithm

(KS)[45, 44] and Paige-Tarjan Algorithm (PT) [56]. In the next section, we give

the formal definition of simulation relation in digital domain and then we describe

KS Algorithm [45, 44] which will be the basis of our proposed method.

2.4. Algorithm for Equivalence Checking

First we define a few terminologies∗ which will be used to explain KS algorithm.

Definition 2.4.1 [Transition Systems] : A transition system TS is a tuple (S,

Act, →, I, AP, L) where,

∗ We follow the notion of the book Principles of Model Checking by Christel Baier and
Joost-Pieter Katoen [20]

22 2. Background and Literature Review

• S is a set of states,

• Act is a set of actions,

• →⊆ S × Act × S is a transition relation,

• I ⊆ S is a set of initial states,

• AP is a set of atomic propositions, and

• L : S → 2AP is a labeling function.

TS is called finite if S, Act and AP are finite. �

Definition 2.4.2 [Partition] : A partition for a set of states S is a set Π =

{B1, B2, . . . , Bk} such that Bi 6= ∅ (for 0 < i ≤ k), Bi ∩ Bj = ∅ (for 0 < i ≤ k

and i 6= j), and S =
⋃

0<i≤k

Bi. Bi ∈ Π is called a block, C ⊆ S is a superblock of

Π if C = Bi1 ∪ · · · ∪Bil for some Bi1 , . . . , Bil ∈ Π. �

Definition 2.4.3 [Pre Operation] : Let TS = (S, Act, →, I, AP, L) be a

transition system. For s ∈ S and κ ∈ Act, the set of κ-predecessors of s is defined

by

Pre(s, κ) =
{

s′ ∈ S|s′
κ
→ s

}

, P re(s) =
⋃

κ∈Act

Pre(s, κ).

�

Definition 2.4.4 [Post Operation] : Let TS = (S, Act, →, I, AP, L) be a

transition system. For s ∈ S and ν ∈ Act, the set of ν-successors of s is defined

by

Post(s, ν) =
{

s′ ∈ S|s
ν
→ s′

}

, P ost(s) =
⋃

ν∈Act

Post(s, ν).

�

The KS algorithm depends on the concept of splitter.

Definition 2.4.5 [Splitter] : A splitter for a block Bi ∈ Π is a block Bj ∈ Π

such that, for some action a ∈ Act, some states in Bi have a-labeled transitions

whose target is a state in Bj and others do not. Therefore, if there are some

states in Bi which can afford a-labeled transition and others cannot, then we have

sufficient reason to distinguish two group of states in Bi and hence it can be split

by Bj w.r.t action a in two new blocks :

B1
i = {s | s ∈ Bi and s

a
→ s′, for some s′ ∈ Bj} and

B2
i = Bi \B

1
i

2.4. Algorithm for Equivalence Checking 23

The splitting results in a refinement Π′ of Π as given below:

Π′ = {B0, B1, . . . , B
1
i , B

2
i , Bi+1, . . . , Bk}

�

To be precise, C is a splitter for Π if there exists a block B ∈ Π with B ∩

Pre(C) 6= ∅ and B \ Pre(C) 6= ∅.

q0/pstart

q1/∅ q2/∅

q3/q q4/r

(a) State Machine 1

t0/pstart

t1/∅

t2/q t3/r

(b) State Machine 2

Figure 2.1: TS2 simulates TS1

Definition 2.4.6 [Simulation Relation] : Let TSi = (Si, Acti, →i, Ii, AP ,

Li), i = 1,2, be the transition system over AP . A simulation for (TS1, TS2) is a

binary relation R ⊆ S1 × S2 such that

1. ∀s1 ∈ I1, ∃s2 ∈ I2 such that (s1, s2) ∈ R.

2. ∀(s1, s2) ∈ R it holds that

(a) L1(s1) = L2(s2).

(b) if s′1 ∈ Post(s1), then there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R.

TS1 is simulated by TS2 (denoted by TS1 � TS2), if there exists a simulation

R for (TS1, TS2). Condition 1 of Definition 2.4.6 requires that all initial states of

TS1 are related to at least one initial state of TS2 but the reverse is not required i.e

there can be some initial state in TS2 that does not have a corresponding candidate

state in TS1. Condition 2a in Definition 2.4.6 states that s1 and s2 are equally

labeled and hence can be considered “local” equivalence of s1 and s2. Condition 2b

in Definition 2.4.6 states that every outgoing transition of s1 must be matched by

an outgoing transition of s2. The reverse of Condition 2b of Definition 2.4.6 may

not be true.

24 2. Background and Literature Review

In the Figure 2.1 we give an example of simulation relation. It is clear that

TS1 � TS2 as every state of TS1 has a corresponding simulating state in TS2

but the reverse is not TRUE i.e TS2 � TS1 since there is no state in TS1 which

can simulate state t1 of TS2. Precisely, the simulation relation for the two state

machines in the Figure 2.1 is as follows :

R = {{q0, t0},{q1, t1}, {q2, t1}, {q3, t2}, {q4, t3}}.

Since, R contains (q0, t0), hence indeed TS1 � TS2.

2.4.1. Kanellakis-Smolka Algorithm

The basic idea of the KS Algorithm is to iterate the splitting of some block Bi

by some block Bj w.r.t some action a until no further refinement is possible and

hence we have reached a fixpoint. The resulting partition is called the coarsest

stable partition. If the initial states of the two state machines belong to the same

partition of the fixpoint, then the two state machines are bi-similar.

We explain KS Algorithm with the help of the labeled transition systems pre-

sented in Figure 2.3†

q0start

q1 q2

a
a

b

b

(a) State Machine 1

t0start

t1

a

b

(b) State Machine 2

Figure 2.2: Before applying Kanellakis-Smolka’s Algorithm

The KS algorithm is meant for checking bisimilarity between two state ma-

chines. Let the initial partition associated with the labeled transition systems of

Figure 2.3 be {Pr}, where

Pr = {q0, q1, q2, t0, t1}.

The block Pr is a splitter for itself. Indeed some states in Pr can afford a-

labeled transitions where other do not. Hence, we can split Pr by Pr based on

†This example has been reproduced from The Algorithmics of Bisimilarity by L. Aceto, A.
Ingolfsdottir and J. Srba published by Cambridge University Press [13]

2.5. Concluding Remarks 25

q0start

q1 q2

a
a

b

b

(a) State Machine 1

t0start

t1

a

b

(b) State Machine 2

Figure 2.3: After applying Kanellakis-Smolka’s Algorithm once

the action a and we get two new partition consisting of the blocks {q0, t0} (the

set of states which can afford a labeled transitions) and {q1, q2, t1} (the set of

states that cannot afford a labeled transition). We would have obtained the same

partition had we done the splitting w.r.t action b. We can observe that neither of

the blocks {q0, t0} nor {q1, q2, t1} can be split by the other with respect to any

action. Indeed, states in each block are all bisimilar to one another whereas states

in different blocks are not. The two state machines are bisimilar since the initial

states namely q0 and t0 of the two state machines are in the same partition i.e.

{q0, t0} are in the same partition.

The above mentioned algorithms require that the input labeled transition sys-

tems to be fully constructed in advance. In practice, a labeled transition system

describing a reactive system is typically specified as a parallel combination of

some other labeled transition systems. Hence, it is well known that the size of

the resulting labeled transition system may grow exponentially w.r.t the number

of the parallel components. The phenomenon is known as state space explosion in

the verification parlance and hence a major obstacle in the use of the algorithms

which require explicit construction of the input labeled transition systems in the

automatic verification of large reactive systems.

To deal with the state space explosion, a symbolic approach based on the use

of Reduced Ordered Binary Decision Diagram (ROBDD) [25] has been proposed

in [22] to represent finite labeled transition systems symbolically. The use of

ROBDDs permit succinct representation of finite objects.

2.5. Concluding Remarks

This chapter provides a basic overview of the different logic languages of both

digital as well as AMS domain. It also describes OVL of digital domain. This

26 2. Background and Literature Review

chapter also presents some relevant work on the equivalence checking of AMS

circuits and has described a classical algorithm for finding equivalence in the digital

domain.

Chapter 3

AMS Verification Library

The development and use of assertions in the Analog and Mixed-signal (AMS)

domain is a subject which has attracted significant attention lately from the ver-

ification community. Recent studies have suggested that natural extensions of

assertion languages (like PSL [7] and SVA [6]) into the AMS domain are not ex-

pressive enough to capture many AMS behaviors, and that a library of auxiliary

AMS functions [50, 51] are needed along with the assertion language. The inte-

gration of auxiliary functions with the core fabric of a temporal logic is non-trivial

and can be challenging for a verification engineer. Assertions are widely used in

simulation based verification in digital domain and assertion languages like SVA

or PSL have their syntax derived from temporal logics like LTL. Research commu-

nity is now seriously pursuing to extend the assertion languages to AMS domain to

capture AMS behaviors. In this chapter, we propose an alternative to using AMS

assertions, namely the use of a verification library. It is a collection of carefully

chosen parameterized basic modules which can be used to perform simple arith-

metic, Boolean operation and to model temporal properties on dense real time

signal. Complex property verification modules can be composed by connecting

these basic modules in a proper way. We derive such a complex property mod-

ule in Example 3.1 by interconnecting basic modules of AMS Verification Library

(AMS-VL). We believe that verification library has some definite advantages in

the AMS domain. Some of the prominent advantages are (i) the user need not be

well trained in assertion languages and its AMS extensions. The user can easily

connect different basic modules to realise complex property verification module,

(ii) every module is parameterized and the parameters can be easily set using a

GUI in a schematic editor, (iii) verification library and auxiliary function library

can be unified to create a common framework for capturing AMS behaviors which

is less confusing for verification engineers. Moreover, some behaviors which are

easily expressed using the verification library cannot be succinctly expressed using

some of the existing AMS extensions of temporal logics like AMS-LTL [51, 52].

We explain one such behavior in Example 3.2 after introducing the basic modules

27

28 3. AMS Verification Library

in the next section.

In our approach, we have used existing standardized resources (like Verilog-

AMS) [3] to develop the library of checkers to be used in a passive online monitor-

ing methodology. We demonstrate the use of these library modules in the verifi-

cation of large real world AMS designs from the power management domain, like

Buck regulators, Linear Drop-Out regulators (LDO), and their components. There

exists several fundamental differences between our work and the work reported in

the only other paper we could locate on AMS verification library, namely [53].

These are as follows:

1. The libraries reported in [53] work on clock boundaries only, which is not

suitable for AMS properties. AMS simulators use their own sampling algo-

rithms which typically produce irregular sampling intervals. Our libraries

handshake with the AMS simulator and instruct the simulator to improve ac-

curacy near the events by declaring events of interest through cross events in

Verilog-AMS. Hence in our approach the risk of missing an event is marginal-

ized.

2. The libraries reported in [53] miss a very important point, namely that

two independent matches of a property may overlap in time. In order to

handle this aspect through a verification library, the library modules must

be reentrant. In the proposed work, this is achieved by implementing the

modules in such a way that they can spawn concurrent threads to handle

overlapping matches.

For the second case above, it is important to note that due to the dense time

semantics of AMS behaviors, it is possible to have a continuum of matches for a

property unless it is triggered by a discrete event like a cross event. This leads to

a potential explosion in the number of states for an online monitor, though it is

possible to develop offline monitors which work by analyzing real time intervals.

Since our goal is to develop a library of online monitors, we chose to impose the

restriction that all library modules are triggered by events. Note that this was

also the case in [53] with the clock event being the trigger.

The chapter is organized as follows. In Section 3.1, we define a few terms and

notations that will be used to explain the semantics of the AMS-VL modules. In

the same section we define the parameters of the AMS-VL that characterizes dif-

ferent modules. Section 3.2 introduces the AMS-VL and its modules. Section 3.3

represents several example verification network using the modules of AMS-VL.

Section 3.4 presents the tool flow and implementation issues. Section 3.5 intro-

duces test cases in brief, the simulation environment and simulation results using

industrial test cases. Section 3.6 presents our conclusions.

3.1. Definitions and Preliminaries 29

3.1. Definitions and Preliminaries

First, we present some definitions which will be used later to define semantics of

different AMS-VL modules.

Definition 3.1.1 [Time Interval] : Time Domain can be defined as the ordered

collection of all non-negative real numbers R≥0 and can be denoted as T. An

interval I is a non-empty convex subset of R≥0 and can be written as pair over

R≥0 × R≥0 i.e. the set of non-negative real numbers. An interval can be open,

closed or half-open i.e. open at one end (may be left open or right open). An

interval can be bounded or unbounded. Every interval I can be expressed as one

of the following forms (a, b), (a, b], [a, b), [a, b], [a, ∞) or (a, ∞) where a, b ∈

R≥0 and b > a. The left and right end points of I are denoted by l(I) = a and

r(I) = b respectively. In this interval notation, for t, t′ ∈ R≥0, (t + I) denotes

the interval {t + t′ | t′ ∈ I}.

Definition 3.1.2 [Minkowski Sum] : The Minkowski sum, also known as

dilation, of two sets P1 and P2 in euclidean space is defined as P1 ⊕ P2 = {x1 +

x2 : x1 ∈ P1, x2 ∈ P2 } i.e. addition of every element of P1 with every element of

P2. Of particular interest is the application of this operation to one-dimensional

sets consisting of elements of time domain T. Precisely, {t} ⊕ [a,b] = [t+a, t+b],

[m,n) ⊕ [a,b] = [m+a, n+b].

Definition 3.1.3 [Signal] : A finite length signal s over a domain D is partial

order function s : T → D whose domain of definition is the interval I = [0, r),

r ∈ Q≥0. We denote | s | = r, read as the length of the signal s is r. We use the

notation s[t] = ⊥ ∀t ≥ |s|.

Definition 3.1.4 [Signal Space] : Signal space S is the set of continuous timed

Analog and Boolean signals, where each continuous timed analog signal xa is a

mapping xa : R ≥0 → R, and each continuous timed Boolean signal xb is a mapping

xb : R ≥0 → {⊤, ⊥}.

The set of Boolean atomic propositions are denoted by AP, whereas the set

of continuous variables are denoted by V. Valuations for the elements of AP over

time are Boolean signals, whereas the valuations for elements of V over time are

analog signals.

AMS-VL consists of parametrized modules. Different parameters of the AMS-

VL modules make the total parameter set of AMS-VL. Some of the parameters

of the paramset are common to several modules. Also some parameters are there

30 3. AMS Verification Library

Name of Parameter Context of Utilization

EdgeDirection Specifies direction of triggering condition for which analog
event is to be generated, +1 or 1 is meant for posedge and
-1 is meant for negedge.

ThresholdValue Specifies threshold for comparison of analog values in analog
predicate.

ArithmeticOperator Specifies Arithmetic Operation to be performed on the Ana-
log Signals. +1 or 1 is meant for Arithmetic Addition and
-1 is meant for Arithmetic Difference.

ComparisonOperator Specifies the Comparison Operator for the Analog Predicate
or Analog Condition statement. +1 or 1 is meant for >

operation and -1 is meant for < operation.

BooleanOperator Specifies the Boolean Operator for the Boolean Signals. +1
or 1 is meant for logical AND operation and -1 is meant
for logical OR operation.

Delay Specifies the time period for which the TRUTH of an ex-
pression has to be checked.

MinimumDelay Specifies the minimum time period before which the prop-
erty checker should not initiate checking of TRUTH of an
expression.

MaximumDelay Specifies the maximum time period till which the property
checker should keep checking the TRUTH of an expression.

KeepMatchHighTime Specifies the time duration for which the match/fail signal
of the property checker module should remain high after the
test condition is satisfied/violated.

TimeTolerance Specifies the maximum allowable error on real time scale
between the estimated crossing point and the true crossing
point.

ValueTolerance Specifies the maximum allowable error on real value scale
between the estimated value point and the true value point.

Table 3.1: Different Parameters and their Context of Utilization

in the paramset which are specifically used for a particular module. The de-

fault values of all the parameters of paramset is defined in a header file called

ams_verif_defines.h. These are the values assumed by the parameters when the

user does not specify the values explicitly. User can override default values by pass-

ing new values in the instantiation of the module in the schematic. We present

name of the different parameters and their context of utilization in the Table 3.1.

3.2. The Structure of AMS Verification Library

The proposed AMS verification library, called AMS-VL, extends the OVL ap-

proach to the AMS domain. Like the OVL modules, AMS-VL modules can be

interconnected to create composite properties from the atomic properties repre-

sented by individual modules. In the next subsection we present the modules

available in the library. The AMS-VL library consists of broadly three types of

modules, as shown in Table 3.2. Next we discuss all the modules in detail describ-

3.2. The Structure of AMS Verification Library 31

Type of Module Name of Module Purpose of Module

Latch Modules CaptureAndHold captures and holds any input
digital signal forever until simu-
lation is over.

GenerateDelay holds any input digital signal for
a specified delay time.

Arithmetic ArithmeticOperator generates sum or difference of
voltage of analog input signals of
the modules. With the addition
of unit resistors at the input /
output ports, sum or difference
of currents of the analog input
nets can also be calculated.

and EventDetector monitors analog cross events on
an analog input signal with re-
spect to a specified threshold
parameter.

Boolean EventDetector_Extended monitors analog events based on
the relative values of their input
analog signals.

Operation PredicateEvaluator compares any analog signal with
user specified threshold value.

Modules PredicateEvaluator_ Extended compares two analog signals
based on their relative values.

BoolOperator performs standard Boolean
operations.

Interval GlobalOperator checks the truth of an expression
over a specified period of time.

Operation EventuallyOperator checks whether an expression
ever becomes true within a spec-
ified time frame.

Modules UntilOperator checks whether an expression re-
mains true over a time window
until another event occurs

PredicateAssert checks the truth of an expres-
sion when a particular condition
is satisfied over a specified period
of time.

Table 3.2: Broad Classification of AMS-VL Modules

ing their input / output ports, parameters, syntax and semantics.

3.2.1. CaptureAndHold

The module can be used to capture and hold any Boolean / digital signal. For

example, this module can capture and hold the match / fail signal of some property,

which can be used to trigger the checking of next level property.

32 3. AMS Verification Library

Port Name Port Type Description

in_1 logic a Boolean signal is applied in this port.

assertE logic signal is asserted when a Boolean signal is captured.

Table 3.3: Ports of CaptureAndHold Module

Parameter Name Type Default

Value

Range Unit

N/A N/A N/A N/A N/A

Table 3.4: Parameters of CaptureAndHold Module

Syntax

CaptureAndHold instance_name(in_1, assertE);

Example :

CaptureAndHold CAP_1(in_1, assertE)

3.2.2. GenerateDelay

This module can be used to delay the propagation of any digital pulse. For ex-

ample, a digital pulse generated after an event is detected, can be propagated

through this module after a certain delay value.

Port Name Port Type Description

in logic any digital pulse that need to be reproduced after certain
delay is applied in this port.

out logic a pulse gets generated after the delay time corresponding
to input digital pulse.

Table 3.5: Ports of GenerateDelay Module

Parameter Name Type Default

Value

Range Unit

delay Real 10e-6 (-inf:inf) secs

Table 3.6: Parameters of GenerateDelay Module

Syntax

GenerateDelay #(.delay(delay)) instance_name(in, out).

Example: The following module GD_1 delays the input Boolean signal in by

10µs and propagates it to the output out.

GenerateDelay #(.delay(10e-06)) GD_1(in,out).

3.2.3. ArithmeticOperator

Generates voltage equal to the arithmetic sum or arithmetic difference of the

input voltages applied at the in_1 and in_2 ports. The module can be used to

3.2. The Structure of AMS Verification Library 33

add current too. To add current, the user has to add an unit valued resistor in

series with the input / output ports of the module. In that case, the input current

will be converted to equivalent voltage and the module will add the voltage. The

output resistor will convert the output voltage to equivalent current.

Port Name Port Type Description

in_1 electrical A voltage signal is applied at this port.

in_2 electrical Another voltage signal is applied at this port.

out electrical Voltage at this port is arithmetic sum or arithmetic differ-
ence of the . input voltage signals applied at the input port
in_1 and in_2.

Table 3.7: Ports of ArithmeticOperator Module

Parameter Name Type Default

Value

Range Unit

ArithmeticOperator Integer 1.0 [-1:1] exclude 0 N/A

Table 3.8: Parameters of ArithmeticOperator Module

Syntax

ArithmeticOperator #(.ArithmeticOperator(arithmeticoperator)) instance_name(in_

1, in_2, out);

Example : The following module AO_1 adds the input voltages at input ports

inp_1 and inp_2 and produces the sum of voltages at the output port outp_1.

ArithmeticOperator #(.ArithmeticOperator(+1)) AO_1(inp_1, inp_2, outp_1)

Description

Whenever the ArithmeticOperator is equal to 1 or +1, this module generates the

arithmetic sum of the voltages applied at the input ports. Conversely, when the

ArithmeticOperator is equal to -1, this module generates the arithmetic difference

of the voltages applied at the input ports.

3.2.4. EventDetector

Generates a pulse corresponding to an analog event whenever a particular analog

condition is SATISFIED.

Port Name Port Type Description

in_1 electrical An analog signal is applied in this port.

match logic A pulse of duration equal to KMTH is generated at this
port for a monitored analog event when threshold crossing
in a specified direction in input analog signal is detected.

Table 3.9: Ports of EventDetector Module

34 3. AMS Verification Library

Parameter Name Type Default

Value

Range Unit

ThresholdValue Real 1.0 (-inf:inf) Volt

ValueTolerance Real 1e-9 [-1:1] Volt

TimeTolerance Real 1e-9 [-1:1] secs

EdgeDirection Integer 1 [-1:1] N/A

KeepMatchHighTime Real 10e-9 [1e-12:1e-6] secs

Table 3.10: Parameters of EventDetector Module

Syntax

EventDetector #(.ThresholdValue(valTld), .ValueTolerance(valV), .TimeToler-

ance(valT), .EdgeDirection(ED), .KeepMatchHighTime(KMHT))

instance_ name(in_ 1, match);

Example : The following module ED_1 detects the following event at the input

port inp_1: Whenever input voltage exceeds +1.5V an event should be produced.

The event pulse duration is 10ns, time tolerance parameters is 1ns, value tolerance

parameter is 1µV.

EventDetector #(.ThresholdValue(+1.5), .ValueTolerance(1e-6), .TimeTolerance(1e-

9), .EdgeDirection(+1), .KeepMatchHighTime(10e-9)) ED_1(inp_1, match)

We define an analog event b in terms of input signal and parameters of the

module as b = cross(V (in_1)− valT ld) where cross generates monitored analog

event b when voltage at in_1 crosses valTld. Here ED ∈ {@+, @−}. @+ denotes

posedge and @− denotes negedge. Detection of an analog event by EventDetetor

is denoted by ED(b). Detection of a posedge analog event by EventDetector is

denoted by {〈S, t〉 ⊢ @+(b)} ⇒ matchKMTH
↑

∗ and detection of a negedge analog

event is denoted by {〈S, t〉 ⊢ @−(b)} ⇒ matchKMTH
↑

†. On detection of an event,

a pulse of duration KeepMatchHighTime is generated at the match output. The

pulse at the match output is generated within a tolerance bounding box defined

by the ValueTolerance and TimeTolerance parameter. Figure 3.1 shows a trace of

the module.

∗read as 〈 S, t〉 detects a posedge event b then match is high for KMTH duration
†read as 〈 S, t〉 detects a negedge event b then match is high for KMTH duration

3.2. The Structure of AMS Verification Library 35

Semantics

For a signal space S, detection of an analog event b at time t can be expressed as:

ED(b)⇒







{〈S, t〉 ⊢ @+(b)} ⇒ matchKMTH
↑







if〈S, t′〉 � b where t′ ∈ [t± valT] &

∃t′′ ∈ [0, t′) s.t∀ t′′′ ∈ [t′′, t′) 〈S, t′′′〉 2 b

then match = 1 ∀t′′′′ ∈ [t′ +KMHT] &

match = 0 elsewhere.

{〈S, t〉 ⊢ @−(b)} ⇒ matchKMTH
↑







if〈S, t′〉 2 b where t′ ∈ [t± valT] &

∃t′′ ∈ [0, t′) s.t∀ t′′′ ∈ [t′′, t′) 〈S, t′′′〉 � b

then match = 1 ∀t′′′′ ∈ [t′ +KMHT] &

match = 0 elsewhere.

ValueTolerance Constant Value = 1.5
TimeTolerance

Value
V(in_1)

match

specified edge direction: posedge

KeepMatchHighTime

V(in_1)
Value

specified edge direction: negedge

ConstantConstant

time time

match

Figure 3.1: Temporal Trace of EventDetector

3.2.5. EventDetector_Extended

Generates a match pulse corresponding to an analog event whenever a particular

analog condition is SATISFIED by two analog signals.

Port Name Port Type Description

in_1 electrical One analog signal is applied in this port.

in_2 electrical Another analog signal is applied in this port.

match logic If analog event found, a pulse is generated at match.

Table 3.11: Ports of EventDetector_Extended Module

Syntax

EventDetector_Extended #(.ValueTolerance(valV), .TimeTolerance(valT), .EdgeDi-

rection(ED), .KeepMatchHighTime(KMHT)) instance_name(in_1, in_2, match);

36 3. AMS Verification Library

Parameter Name Type Default

Value

Range Unit

ValueTolerance Real 1e-9 [-1:1] Volt

TimeTolerance Real 1e-9 [-1:1] secs

EdgeDirection Integer 1 [-1:1] N/A

KeepMatchHighTime Real 10e-9 [1e-12:1e-6] secs

Table 3.12: Parameters of EventDetector_Extended Module

Example : The following module EDE_1 detetects the following event at the

input ports inp_1 and inp_2. Whenever the input signal voltage at inp_1 ex-

ceeds the input voltage at inp_2, an event should be produced. The value of

value tolernce, time tolerance, pulse width of the match pulse are kept same as in

previous subsection.

EventDetector_Extended #(.ValueTolerance(1e-6), .TimeTolerance(1e-9), .EdgeDi-

rection(+1), .KeepMatchHighTime(10e-9)) EDE_1(inp_1, inp_2, match)

We define an analog event b in terms of input and parameters of the mod-

ule as b = cross(V (in_1) − V (in_2)) where cross generates monitored ana-

log event b when voltage at in_1 crosses voltage at in_2. Here ED ∈ {@+,

@−}. @+ denotes posedge and @− denotes negedge. Detection of an analog

event by ams_EventDetetor_Extended is denoted by EDE(b). Detection of a

posedge analog event by EventDetector_Extended is denoted by {〈S, t〉 ⊢ @+(b)}

⇒ matchKMTH
↑ and detection of a negedge analog event is denoted by {〈S, t〉 ⊢

@−(b)}⇒ matchKMTH
↑ . On detection of an event, a pulse of duration KeepMatch-

HighTime is generated at the match output. The pulse at the match output is

generated within a tolerance bounding box defined by the ValueTolerance and

TimeTolerance parameter. Figure 3.2 shows a trace of the module.

Semantics

The semantics of EventDetector_Extended is similar to the semantics of Event-

Detector.

3.2.6. PredicateEvaluator

Checks whether an analog predicate is TRUE and indicates its truth over dense

real time continuously until predicate becomes FALSE.

Syntax

PredicateEvaluator #(.ThresholdValue(valTld), .ValueTolerance(valV), .TimeTol-

erance(valT), .ComparisonOperator(CO)) instance_name(in_1, assertE);

Here CO ∈ {>, <}. Here, +1 is meant for > and -1 is meant for <. After

3.2. The Structure of AMS Verification Library 37

Reference Signal V(in_2)

V(in_2)

V(in_1)

assertE

Specified Direction: posedge

KeepMatchHighTime

Specified Direction: negedge

V(in_2)

assertE

V(in_1)

timetime

Figure 3.2: Temporal Trace of EventDetector_Extended

Port Name Port Type Description

in_1 electrical An analog signal is applied in this port.

assertE logic indicates TRUTH of analog predicate over dense real time
continuously by keeping signal at assertE high until predi-
cate becomes FALSE.

Table 3.13: Ports of PredicateEvaluator Module

Parameter Name Type Default

Value

Range Unit

ThresholdValue Real 1 (-inf:inf) Volt

ValueTolerance Real 1e-9 [-1:1] Volt

TimeTolerance Real 1e-9 [-1:1] secs

ComparisonOperator Integer 1 [-1:1] exclude 0 N/A

Table 3.14: Parameters of PredicateEvaluator Module

TRUTH of an analog predicate is detected, signal at port assertE will be made

high and will be kept high until predicate becomes false.

Example : The following module PE_1 detects whenever the input voltage at

inp_1 becomes greater than 1.5V and keeps assertE high as long as voltage re-

mains higher than 1.5V.

PredicateEvaluator #(.ThresholdValue(+1.5), .ValueTolerance(1e-6), .TimeTolerance(1e-

9), .ComparisonOperator(+1)) PE_1(inp_1, assertE)

Ideally analog predicate can be written as:

API = V (in_1) CO valT ld where CO ∈ {>, <}.

But in reality it is modeled as follows:

APR = V (in_1) CO (valT ld± valV) where CO ∈ {>, <}.

38 3. AMS Verification Library

TRUTH detection of an analog predicate by PredicateEvaluator is denoted by

PE(APR). Figure 3.3 shows a trace of the module.

Semantics

For a signal space S, detection of TRUTH of an analog predicate APR over a time

interval I can be expressed as:

PE(APR) = {〈S, I〉 � APR} ⇒ assertE↑







if 〈S, l(I)〉 ⊢ @+(APR),

〈S, r(I)〉 ⊢ @−(APR) and

∀ t′ ∈ I 〈S, t′〉 � APR,

then, assertE = 1 ∀t′′ ∈ [I ± valT]

= 0 elsewhere.

assertE for V(in_1) > 1.5

time time

assertE for V(in_1) < 1.5

assertE

V(in_1)

Value

Constant

assertE

Constant
Value

V(in_1)

Constant Value = 1.5

Figure 3.3: Temporal Trace of PredicateEvaluator

3.2.7. PredicateEvaluator_Extended

Checks whether an analog predicate is TRUE and indicates truth over dense real

time continuously until predicate becomes FALSE.

Port Name Port Name Description

in_1 electrical An analog signal is applied in this port.

in_2 electrical Another analog signal is applied in this port.

assertE logic indicates TRUTH of analog property over dense real time.
continuously by keeping assertE high until property be-
comes FALSE.

Table 3.15: Ports of PredicateEvaluator_Extended Module

3.2. The Structure of AMS Verification Library 39

Parameter Name Type Default

Value

Range Unit

ValueTolerance Real 1e-9 [-1:1] Volt

TimeTolerance Real 1e-9 [-1:1] secs

ComparisonOperator Integer 1 [-1:1] exclude 0 N/A

Table 3.16: Parameters of PredicateEvaluator_Extended Module

Syntax

PredicateEvaluator_Extended #(.ValueTolerance(valV), .TimeTolerance (valT),

.ComparisonOperator (CO)) instance_name(in_1, in_2, assertE);

Here CO ∈ {>, <}. Here, +1 is meant for > and -1 is meant for <. After

TRUTH of an analog predicate is detected, signal at portassertE will be made

high and will be kept high until predicate becomes false.

Example : The following module PED_1 detects whenever the input voltage at

inp_1 becomes greater than input voltage at inp_2 and keeps assertE high as

long as voltage at inp_1 remains higher than voltage at inp_2.

PredicateEvaluator_Extended #(.ValueTolerance(1e-6), .TimeTolerance(1e-9), .Com-

parisonOperator(+1)) PE_1(inp_1, inp_2, assertE)

Ideally analog predicate can be written as:

API = V (in_1) CO V (in_2) where CO ∈ {>, <}.

But in reality it is modeled as follows:

APR = V (in_1) CO (V (in_2)± valV) where CO ∈ {>, <}.

TRUTH detection of an analog predicate by PredicateEvaluator_Extended is de-

noted by PEE(APR).

Semantics

The semantics of PredicateEvaluator_Extended is similar to the semantics of Pred-

icateEvaluator. An example temporal trace is shown in Figure 3.4.

3.2.8. BoolOperator

Generates Boolean signal by applying Boolean operation on the input Boolean

signals.

Syntax

BoolOperator #(.BooleanOperator(BO)) instance_name(in_1, in_2, assertE);

40 3. AMS Verification Library

assertE

assertE for V(in_1) < V(in_2)assertE for V(in_1) > V(in_2)

assertE

V(in_1)

V(in_2) V(in_2)

V(in_1)

timetime

Figure 3.4: Temporal Trace of PredicateEvaluator_Extended

Port Name Port Type Description

in_1 logic A Boolean signal is applied in this port.

in_2 logic Another Boolean signal is applied in this port.

assertE logic After applying Boolean operation on input signals, another
Boolean signal. over dense real time is produced at this
port.

Table 3.17: Ports of BoolOperator Module

Parameter Name Type Default

Value

Range Unit

BoolOperator Integer 1 [-1:1] exclude 0 N/A

Table 3.18: Parameters of BoolOperator Module

Example : Whenever either of the boolean input (i.e. inp_1 or inp_2) becomes

high, the output should become high. It is typically a logical OR operation.

BoolOperator #(.BooleanOperator(-1)) BO_1(inp_1, inp_2, assertE)

Here BO ∈ {-1, 1} excluding zero. -1 is meant for logical OR operation and

+1 or 1 is meant for logical AND operation.

3.2.9. GlobalOperator

After a start event occurs, the module checks whether an expr remains TRUE for

a delay period.

Syntax

GlobalOperator #(.TimeTolerance(valT), .delay(delay),

.KeepMatchHighTime (KMHT)) instance_ name(start, expr, match, fail);

Example: After the start signal is received, expr should remain high for 20ms.

GlobalOperator #(.TimeTolerance(1e-9), .delay(20e-3), .KeepMatchHighTime(10e-

8)) GO_1(start, expr, match, fail)

3.2. The Structure of AMS Verification Library 41

Port Name Port Type Description

start logic an event this port triggers checking of expr.

expr logic expression that is to be checked after start event occurs.

match logic if expr is TRUE for delay time after start, a pulse will be
generated in this port to indicate SATISFACTION.

fail logic if expr is FALSE after start event occurs or expr become
false before delay expires, a pulse is generated at this port
immediately to indicate FAILURE.

Table 3.19: Ports of GlobalOperator Module

Parameter Name Type Default

Value

Range Unit

TimeTolerance Real 1e-9 [-1:1] secs

delay Real 10000 [0:inf) ns

KeepMatchHighTime Real 10e-9 [1e-12:1e-6] secs

Table 3.20: Parameters of GlobalOperator Module

Truth checking of an expr by GlobalOperator is denoted by GO[delay](start, expr).

Satisfaction of an expr by GlobalOperator is denoted by GOS
[delay] and failure is de-

noted by GOF
[delay]. Algorithm 1 shoes the algorithm and Figure 3.5 shows a trace

of GlobalOperator.

Semantics

For a signal space S, TRUTH checking of an expression expr by GlobalOperator

at time t can be expressed as GO[delay](start, expr) = ϕG:

ϕG







{〈S, t〉 � GOS
[delay]} ⇒ matchKMHT

↑







if ∃t′ < t & t ∈ I = t′ ⊕ [delay − valT,

delay + valT], 〈S, t′〉 ⊢ @+(start) &

∀t′′ ∈ [t′, t]〈S, t′′〉 � expr

then match = 1 ∀t′′′ ∈ [t+KMHT] &

match = 0 elsewhere.

{〈S, t〉 � GOF
[delay]} ⇒ failKMHT

↑







if ∃t′ < t & t ∈ [t′, t′ ⊕ [delay − valT,

delay + valT]), 〈S, t′〉 ⊢ @+(start), and

either 〈S, t′〉 2 expr

then fail = 1 ∀t′′ ∈ [t′ +KMHT] &

fail = 0 elsewhere.

or ∀t′′′〈S, t′′′〉 � expr where t′ < t′′′

< [t′ + delay] & 〈S, t′′′〉 ⊢ @−(expr)

then fail = 1 ∀t′′′′ ∈ [t′′′ +KMHT] &

fail = 0 elsewhere.

42 3. AMS Verification Library

Algorithm 1 Algorithm for GlobalOperator Module

1: wait for a start
2: repeat

3: for every start pulse received do

4: parbegin

5: initiate a copy of RTCV at delay value.
6: decrease RTCV continuously and monitor expr.
7: if expr is high from initialization of RTCV until it is zero then.
8: make match high immediately for short duration after RTCV is zero.
9: else if expr is low after initialization of RTCV or expr gets low before delay

time then

10: keep match de-asserted.
11: make fail high immediately for short duration.
12: end if

13: flush that copy of RTCV.
14: parend

15: end for

16: until no start event occurs

start

expr

match

fail
KeepMatchHighTime

overlapping delay interval
two copies of local clock variable activedelay delay delay delay delay delay

delay

1 2 3 4 5 6 7

Figure 3.5: Temporal Trace of GlobalOperator

3.2. The Structure of AMS Verification Library 43

In the Figure 3.5, after the start pulse 1 is received, the expr signal is continu-

ously checked for the delay amount of time. Since expr remains high for the entire

delay period, hence at the end of the delay period, a match signal is produced.

But for the start pulse 2, the expr remains low and hence immediately a fail signal

is produced. Further we note the case for start pulse 6 and 7. Their delay period

is overlapped. Hence, one parallel thread for each of the start pulse 6 and 7 is

generated to check expr signal independently for the delay time. Since in this

case expr remains high for the delay period for both the start pulses, hence two

consecutive match signals are produced corresponding to the two delay periods.

3.2.10. EventuallyOperator

After a start event occurs, the module checks whether an expr become TRUE

within a time window specified by minimum delay and maximum delay.

Port Name Port Type Description

start logic an event in this port triggers checking of expr.

expr logic expression that is to be checked after start event occurs.

match logic if expr becomes TRUE at least once between MinimumDe-
lay and MaximumDelay after start event, then a pulse
is generated in this port to indicate SATISFACTION
immediately.

fail logic if expr never becomes TRUE within the time window speci-
fied by MinimumDelay and MaximumDelay time after start
event occurs, then a pulse is generated at this port to indi-
cate failure.

Table 3.21: Ports of EventuallyOperator Module

Parameter Name Type Default

Value

Range Unit

TimeTolerance Real 1e-9 [-1:1] secs

MinimumDelay Real 0 [0:inf) ns

MaximumDelay Real 10000 [0:inf) ns

KeepMatchHighTime Real 10e-9 [1e-12:1e-6] secs

Table 3.22: Parameters of EventuallyOperator Module

Syntax

EventuallyOperator #(.TimeTolerance(valT), .MinimumDelay(MinD),

.MaximumDelay(MaxD), .KeepMatchHighTime(KMHT)) instance_ name(start,

expr, match, fail);

Example : After the start signal is received, expr should become high within

10ms and 20ms.

44 3. AMS Verification Library

min_delay

max_delay

match

expr

start

two copies of clock variable active
simultaneously

overlapping interval
due to two consecutive start pulses

min_delay

max_delay

1 2 3

Figure 3.6: Temporal Trace of EventuallyOperator

EventuallyOperator #(.TimeTolerance(1e-9), ,MinimumDelay(10e-3), .MaximumDelay(20e-

3), .KeepMatchHighTime(10e-8)) EO_1(start, expr, match, fail)

Truth checking of an expr by EventuallyOperator is given by ED[MinD, MaxD]

(start, expr). Satisfaction of an expr by EventuallyOperator is denoted by

EOS
[MinD, MaxD] and failure is denoted by EOF

[MinD, MaxD]. Algorithm 2 presents

the algorithm and Figure 3.6 shows a trace of the operator module.

Semantics

For a signal space S, TRUTH checking of an expression expr at time t by Even-

tuallyOperator can be expressed as EO[MinD, MaxD](start, expr) = ϕE :

ϕE







{〈S, t〉 � EOS
[MinD, MaxD]} ⇒ matchKMHT

↑























































































if ∃t′ < t, t ∈ I = t′ ⊕ [MinD ± valT,

MaxD ± valT], 〈S, t′〉 ⊢ @+(start), and,

either 〈S, l(I)〉 � expr

then match = 1 ∀t′′ ∈ [l(I) +KMHT] &

match = 0 elsewhere.

or ∃t′′′ ∈ I, 〈S, t′′′〉 � expr

then match = 1 ∀t′′′′ ∈ [t′′′ +KMHT] &

match = 0 elsewhere.

{〈S, t〉 � EOF
[MinD, MaxD]

} ⇒ failKMHT
↑







































if ∃t′ < t &t ∈ I = t′ ⊕ [MinD ± valT,

MaxD ± valT], 〈S, t′〉 ⊢ @+(start),

& ∀t′′ ∈ I, 〈S, t′′〉 2 expr

then fail = 1 ∀t′′′ ∈ [r(I) +KMHT] &

fail = 0 elsewhere.

In the Figure 3.6, after the start pulse 1 is received, the expr signal is not mon-

itored until min_delay time is over. After that the expr signal is monitored until

max_delay time. Since expr became high in between min_delay and max_delay

3.2. The Structure of AMS Verification Library 45

Algorithm 2 Algorithm for EventuallyOperator Module

1: wait for a start pulse
2: repeat

3: for every start pulse received do

4: parbegin

5: initiate a copy of RTCV initialized at real time 0.
6: start incrementing the RTCV as simulation time progresses.
7: keep waiting and ignore expr until RTCV exceeds min_delay.
8: while min_delay ≤ RTCV ≤ max_delay do

9: keep checking expr.
10: if expr is high at least once then

11: make match high for a short duration
12: keep fail low.
13: flush that copy of RTCV immediately.
14: else if expr is never high then

15: make fail high for a short duration.
16: keep match low.
17: flush that copy of RTCV immediately.
18: end if

19: end while

20: parend

21: end for

22: until no start event occurs

hence a match signal is produced as soon as the expr became asserted. For start

pulse 2 and 3, two parallel threads of checking expr are created corresponding to

each of the start pulse 2 and 3. As in the both the cases, expr becomes high

within the stipulated min_delay and max_delay time, hence, two match pulses

are produced.

3.2.11. UntilOperator

After a start event occurs, the module checks whether an expr is TRUE in a time

window specified by minimum delay and maximum delay, until a reset event oc-

curs.

Syntax

UntilOperator #(.TimeTolerance(valT), .MinimumDelay(MinD), .MaximumDe-

lay(MaxD), .KeepMatchHighTime(KMHT)) instance_name(start, expr, reset, match,

fail);

Truth checking of an expr by UntilOperator is denoted by UO[MinD, MaxD]

(start, expr, reset). Satisfaction of an expr by UntilOperator is denoted by

UOS
[MinD, MaxD] and failure is denoted by UOF

[MinD, MaxD]. Algorithm 3 shows the

algorithm and Figure 3.7 shows an example trace of the module.

46 3. AMS Verification Library

Port Name Port Type Description

start logic an event in this port triggers checking of expr.

expr logic expression that is to be checked after start event occurs.

reset logic an event in this port ends checking of expr.

match logic if expr remains TRUE from MinimumDelay time until an
event occurs at
reset port, then a pulse is generated in this port to indicate
SATISFACTION.

fail logic if expr is never TRUE within the time frame or if reset
never occurs within time frame although expr is true, then
a pulse is generated at this port to indicate FAILURE.

Table 3.23: Ports of UntilOperator Module

Parameter Name Type Default

Value

Range Unit

TimeTolerance Real 1e-9 [-1:1] secs

MinimumDelay Real 0 [0:inf) ns

MaximumDelay Real 10000 [0:inf) ns

KeepMatchHighTime Real 10e-9 [1e-12:1e-6] secs

Table 3.24: Parameters of UntilOperator Module

Semantics

For a signal space S, TRUTH checking of an expression expr at time t by Until-

Operator can be expressed as UO[MinD, MaxD](start, expr, reset) = ϕU :

ϕU







{〈S, t〉 � UOS
[MinD, MaxD]} ⇒ matchKMHT

↑































































if ∃t′ < t & t ∈ I = t′ ⊕ [MinD± valT,

MaxD ± valT], 〈S, t′〉 ⊢ @+(start),

& ∃t′′ ∈ I, 〈S, t′′〉 ⊢ @+(reset)

and ∀t′′′ ∈ [l(I), t′′]

〈S, t′′′〉 � expr,

then match = 1 ∀t′′′′ ∈ [t′′ +KMHT] &

match = 0 elsewhere.

{〈S, t〉 � UOF
[MinD, MaxD]} ⇒ failKMHT

↑



























































































































if ∃t′ < t & t ∈ I = t′ ⊕ [MinD ± valT,

MaxD ± valT], 〈S, t′〉 ⊢ @+(start),

either, ∃t′′ ∈ I, 〈S, t′′〉 ⊢ @+(reset)

but ∀t′′′ ∈ [l(I), t′′], 〈S, t′′′〉 2 expr,

then fail = 1 ∀t′′′′ ∈ [t′′ +KMHT] &

fail = 0 elsewhere.

or ∀t′′′′′ ∈ [l(I), r(I)] 〈S, t′′′′′〉 � expr

and ∃t′′′′′′ ∈ [l(I), r(I)] such that

〈S, t′′′′′′〉 ⊢ @+(reset)

then fail = 1 ∀t′′′′′′ ∈ [r(I) +KMHT] &

fail = 0 elsewhere.

In Figure 3.7, after the start pulse 1 is received, expr is not monitored until

3.2. The Structure of AMS Verification Library 47

Algorithm 3 Algorithm for UntilOperator Module

1: wait for a start pulse
2: repeat

3: for every start pulse received do

4: parbegin

5: initiate a copy of RTCV initialized at real time 0.
6: start incrementing the RTCV as simulation time progresses.
7: keep waiting and ignore expr and reset until RTCV exceeds min_delay.
8: while min_delay ≤ RTCV ≤ max_delay do

9: keep monitoring expr and reset.
10: if expr is high continuously until reset is asserted then

11: make match high for short duration as soon as reset is asserted.
12: keep fail low.
13: flush that copy of RTCV immediately.
14: else if reset is not asserted but expr remains asserted then

15: make fail high for short duration as soon as MaximumDelay period
expires.

16: keep match low.
17: flush that copy of RTCV immediately.
18: else if expr becomes low before reset occurs then

19: make fail high for short duration as soon as MaximumDelay period
expires.

20: keep match low.
21: flush that copy of RTCV immediately.
22: end if

23: end while

24: parend

25: end for

26: until no start event occurs

min_delay

max_delay

match

reset
expr

start

max_delay
min_delay

is active here
local clock variable

two copies of

1 2 3

Figure 3.7: Temporal Trace of UntilOperator

min_delay time. After that the expr is monitored upto max_delay time. In this

case expr becomes high within that time and also the reset signal occurs within

max_delay time. Hence, a match pulse is produced as soon as reset pulse occurs.

If either reset does not occur within the min_delay and max_delay time or expr

remains low in the time span from min_delay to max_delay or expr becomes low

48 3. AMS Verification Library

before reset occur, then a fail pulse should be asserted.

3.2.12. PredicateAssert

After start is enabled and kept asserted, it checks whether the expr remains TRUE

over a period of time. This module is helpful when we want to check a particular

property at a particular mode of operation of AMS circuit. For example, we may

be interested in checking the variation of steady state voltage of a circuit when-

ever the circuit is in the steady state mode. We can apply the steady state mode

signal of the circuit in the start port of PredicateAssert and can put the voltage

variation as at the expr of the module. As long as the circuit is in the particular

mode satisfying the desired condition, the assertE will remain high.

Port Name Port Name Description

start logic initiates checking of expr after signal at this port gets as-
serted.

expr logic expression that is to be checked after start asserted.
assertE logic signals at assertE will be kept high following some rules

described in algorithm as TRUTH condition persists.
failE logic signals at failE will be kept high following some rules de-

scribed in algorithm as TRUTH condition does not persist.

Table 3.25: Ports of PredicateAssert Module

Parameter Name Type Default

Value

Range Unit

TimeTolerance Real 1e-9 [-1:1] secs
delay Real 10e-6 [0:inf) secs

Table 3.26: Parameters of PredicateAssert Module

Syntax

PredicateAssert #(.delay(D), .TimeTolerance(valT)) instance_name(start, expr,

assertE, failE);

Truth checking of an expr by PredicateAssert is denoted by PA[delay](start, expr).

Satisfaction of an expr by PredicateAssert is denoted by PAS
[delay] and failure is

denoted by PAF
[delay]. Algorithm 4 presents the module’s working principle and

Figure 3.8.

Description

This modules contains four pins namely start, expr, assertE and failE. Until start

is asserted, we ignore expr. As soon as start is asserted, we initiate a local copy of

RTCV, initialized at the delay value (to be supplied by the user). As the simulation

time progresses, RTCV is decreased continuously. If expr remains asserted then

assertE is made high at the end of delay value and is kept high continuously

3.3. Representative Verification Networks with AMS-VL Components 49

according to the following rules:

Rule 1:

If expr is high for at least delay value after start is de-asserted, keep assertE high

further equal to delay value, after start is de-asserted and after that assert failE.

Else, if expr gets de-asserted in less than delay time after start is de-asserted,

de-assert assertE immediately assert failE.

Rule 2:

If expr is de-asserted before start gets de-asserted, de-assert assertE immediately

and assert failE.

Rule 3:

If start and expr are de-asserted simultaneously, then de-assert assertE immedi-

ately and assert failE.

The trace over a signal for the above mentioned case is shown below.

In the next section, we present a few examples to highlight the use these

modules.

3.3. Representative Verification Networks with AMS-

VL Components

Example 3.1 Derive a module which can monitor crossing of 3V of an analog

signal with a deglitch period of 10µs.

We use three basic modules namely EventDetector, PredicateEvaluator and

GlobalOperator. The EventDetector generates an analog event whenever Vin

crosses 3V in positive direction (indicated by +1) and this match pulse in turn ex-

cites the GlobalOperator module (the start pulse). The PredicateEvaluator keeps

its assertE high as long as Vin remains above 3V. GlobalOperator checks for 10µs

after receiving start pulse whether expr is high continuously (i.e. Vin > 3 for 10µs

continuously). If expr remains high, then at the end of 10µs, a match pulse will

be produced indicating that indeed a deglitched event has occurred. The module

has been shown in Figure 3.9. �

Example 3.2 : If events p, q and r occur in any order, then event t will occur

subsequently.

50 3. AMS Verification Library

expr high > delay time

delay

start

expr

assertE

delay

after start deasserted

(a) Temporal Trace of Case 1 of PredicateAssert (if case)

delay

expr high < delay time after
start

expr

assertE

delay

after start deasserted

(b) Temporal Trace of Case 1 of PredicateAssert (else case)

delay
expr

start

assertE

expr deasserted before
start is deasserted

(c) Temporal Trace of Case 2 of PredicateAssert

start

expr

assertE

delay

expr and start

deasserted simultaneously

(d) Temporal Trace of Case 3 of PredicateAssert

Figure 3.8: Different Cases of PredicateAssert Module

3.3. Representative Verification Networks with AMS-VL Components 51

Algorithm 4 Algorithm for PredicateAssert Module

1: repeat
2: wait for start.
3: if start is asserted then
4: start monitoring expr.
5: else
6: ignore expr.
7: end if
8: if start is high and expr gets asserted then
9: initiate a copy of RTCV immediately initialized at delay..

10: end if
11: if start does not get de-asserted and expr is asserted until RTCV is zero

then
12: assert assertE and failE high as per following:
13: Case 1:
14: if expr is high for at least delay time after start is de-asserted then
15: make assertE high a maximum of delay time units after start is

de-asserted.
16: make failE high after delay period expires.
17: else if expr is high less than delay time after start de-asserted then
18: de-assert assertE as soon as expr is de-asserted and assert failE.
19: end if
20: Case 2:
21: if expr is de-asserted but start continues to remain asserted then
22: de-assert assertE as soon as expr is de-asserted and assert failE.
23: end if
24: Case 3:
25: if expr and start get de-asserted simultaneously then
26: de-assert assertE as soon as expr is de-asserted and assert failE.
27: end if
28: end if
29: until false

It is easy to express that p, q and r occurs in any sequence as Fp ∧ Fq ∧ Fr

in LTL, and also easy to express that t will follow any of these events (say p) as:

G(p ⇒ Ft)

but it is not easy to express that all three events will be followed by t. For

example, the property:

G(Fp ∧ Fq ∧ Fr ⇒ Ft)

does not capture the desired intent, since it does not force event t to occur

after events p, q and r. In order to express the desired intent in LTL, we have to

52 3. AMS Verification Library

PredicateEvaluator

GlobalOperator

in_1 match

in_1

start

expr

match

fail

MaximumDelay = 10 µs

ComparisonOperator : >

ThresholdValue : 3V

ThresholdValue : 3V
EdgeDirection : +1

EventDetector

Vin

Vin

Deglitch_Period = 10 µs

EventDetector_Deglitched

ThresholdValue : 3V

in_1 match

assertE

Figure 3.9: EventDetector Deglitched Module

Detects Event p

Detects Event q

EventDetectors

Detects Event r CaptureAndHold

AND Gate

CaptureAndHold

CaptureAndHold
Detects Event t

EventDetectors

EventDetectors EventullyOperator

Figure 3.10: Multiple Event Detection

enumerate all six possible sequences in which p, q and r occur and then for each

sequence expression that it will be followed by t. Figure 3.10 shows a monitor

for the desired property using modules of verification library. The EventDetectors

detects occurrence of events p, q and r in any order and they get latched in

the CaptureAndHold modules. The output of the CaptureAndHold modules are

logically ANDed, which triggers checking of event t. The option of using state

elements such as latches (i.e. CaptureAndHold) and combinational elements such

as gates along with the monitors provided in the proposed verification library is a

significant advantage over pure formal properties. �

Example 3.3 : After vin crosses 2.0 volts, vout should cross 2.5 volts sometime

between 10µs and 20µs.

Figure 3.11 shows the AMS-VL realization of the Property 3.3. In Figure 3.11,

the EventDetector module monitors the event of vin crossing 2.0 volts. The match

pulse of this module triggers the EventuallyOperator module. The PredicateEval-

uator compares the voltage at vout and keeps its assertE pin high as long as vout

3.3. Representative Verification Networks with AMS-VL Components 53

PredicateEvaluator
Minimum Delay = 10 µs

Maximum Delay = 20 µs
Property_Fail

Property_Match
in_1

in_1

fail

Threshold = 2.5

EventDetector

Edge Direction = +1 (posedge)
Threshold = 2.0

vout

vin
EventuallyOperator

start match

expr

match

assertE

Figure 3.11: AMS-VL Realization of Example 3.3

remains above 2.5 volts. The EventuallyOperator module has parameters Min-

imumDelay and MaximumDelay which, in this case, are set to 10µs and 20µs

respectively. If assertE goes high at some time between 10µs and 20µs of receiv-

ing its start pulse, the EventuallyOperator will assert its Property_Match pin,

thereby signaling a match. On the other hand, if assertE does not get asserted

within the specified time bound, then Property_Fail will be asserted at the end

of 20 µs (that is, after MaximumDelay) to indicate a property failure. �

We now present a more complex example in which the network of AMS-VL

modules uses a feedback loop to express a recurring property expression. The

following property has been checked on BUCK regulator from National Semicon-

ductor.

Example 3.4 : After 190 µs of entering startup mode, the buck regulator will

enter its steady state mode, where its steady state voltage will remain within 0.5

V with a tolerance of 0.05 V for the next 10 µs. The steady state voltage should

remain in this range at a sampling granularity of 20 µs.

Figure 3.12 shows the AMS-VL realization of the Property 3.4.In Figure 3.12,

BUCK_EN is the enable pin of the buck regulator, and BUCK_FB is a feedback

pin of the BUCK regulator used to implement our property. In Part A of Fig-

ure 3.12, the network detects whether the buck regulator has entered its startup

mode. In Part B of the same figure, the network detects whether the buck regula-

tor has entered its steady state mode. In Part C of the figure, the GenerateDelay

operator activates the GlobalOperator module 190µs after start up is detected (by

Part A). Within the next 10µs the GlobalOperator module will either assert its

match signal or its fail signal, following which the feedback path will be activated

to reactivate the GlobalOperator module after another 10µs (using the second

GenerateDelay module). Since the loop delay consisting of the GlobalOperator

54 3. AMS Verification Library

Startup_Fail

BUCK_FB

BoolOperator

BooleanOperation : ∧

in_1

in_1EventuallyOperator

Part A

in_1

EventDetector

in_1

in

GenerateDelay
Delay = 190µs

Part C

in_2
in_1

Delay = 10µs

expr
Steady_State

start

fail

Property_Match

Property_Fail

assertEin_1

in_2

BoolOperator

start
expr

GlobalOperator

MaximumDelay = 10µs
MinimumDelay = 0µs

assertE

Startup_Match
out assertE

out in

match

Steady_State
assertE

in_2

GenerateDelay
Delay = 10µs

assertE
BUCK_FB

match

Comparison_Operator : <
ThresholdValue = 0.55
PredicateEvaluator

Edgedirection = +1 (posedge)
BoolOperator

ThresholdValue = 0.1

Part B

BooleanOperation : ∨

BooleanOperation : ∨

Comparison_Operator : >

ThresholdValue = 0.45
PredicateEvaluator

match
fail

Delay
Output

Startup_Match

BUCK_EN

Figure 3.12: AMS-VL Realization of Example 3.4

and the second GenerateDelay module is upperbounded by 20µs, the constraint

on sampling granularity is satisfied. �

The following property has been checked on a PLL circuit from Freescale Inc.

Example 3.5 When the PLL gets locked, the frequency of oscillation of pll_refclk

and pll_fdbkclk should be equal. The frequencies should remain equal till PLL

remains locked.

Figure 3.13 shows the AMS-VL realization of the Property 3.5. In Figure 3.13,

pll_en is the enable pin, pll_refclk is the reference clock pin and pll_fdbkclk is the

feedback clock pin of the PLL used to implement our property. Stability in the

voltage of the pin vctrl of PLL is used to determine the locking condition. Sample

code for the auxiliary function FrequencyDetector has been shown in Appendix A.

In Part A of Figure 3.13, the network uses and auxiliary function namely Fre-

quencyDetector to detect the frequency of oscillation of pll_refclk and pll_fdbkclk.

In Part B of the same figure, the network detects whether the PLL has entered

into the lock state by checking the voltage of the vctrl pin. In Part C of the figure,

ArithmeticOperator calculates the difference of the frequency of two pins. The two

PredicateEvaluators check whether the difference is within certain tolerance value

as shown in the figure. The indicateLock (as detected in Part B) activates the

PredicateAssert module and keeps it activated as long as the PLL is locked. De-

3.4. Tool Flow and Implementation Issues 55

assertE
in

Part A

out

out

enable

ThresholdValue = 229.5e-3 V
ComparisonOperator : >
PredicateEvaluator Part B

vctrl
in_1 assertE BoolOperator

indicateLock

BoolOperation : ∧

in_2

in_1

in_1 assertE

Part C

Property_Fail

Property_Match

PredicateAssert

start

expr failEassertE

BoolOperation : ∧

PredicateEvaluator
ComparisonOperator : <

Thresholdvalue = 0.5e-3

ArithmeticOperation : -1 (for difference)

FreqFdbkClk

FreqPllRefClk

ArithmeticOperator

in_1

in_2
assertE

in_1 assertE

in_1 assertE

in_1
in_2

BoolOperator

PredicateEvaluator
ComparisonOperator : >
ThresholdValue = -0.5e-3

ThresholdValue = 230.5e-3 V
ComparisonOperator : <
PredicateEvaluator

indicateLock

pll_refclk

pll_en

pll_fdbkclk

FrequencyDetector

FreqFdbkClk

FrequencyDetector

FreqPllRefClkin

enable

assertE

Figure 3.13: AMS-VL Realization of Example 3.5

Verification
Report

Design

Translation

Translation

Interconnection

AMS

Library
Verification

Auxiliary

Library

Simulation
with

AMS Simulators

Specification

Auxiliary
Functions

Specification

DUT

Testbench
Verification

Network

AMS
Properties

Instantiation
and

Cascading

Parameter
Specification

Figure 3.14: Tool Flow of AMS Verification Library

pending upon the frequency difference value, the PredicateAssert will accordingly

either assert assertE or failE. �

3.4. Tool Flow and Implementation Issues

Figure 3.14 (Figure 1.1 reproduced for ease of understanding) shows the tool flow

for the verification of AMS behaviors using AMS-VL along with auxiliary func-

tions. In the present version of the tool, auxiliary functions are encoded in Verilog-

AMS.

The library is implemented as a package consisting of source code of the mod-

ules and the symbols in Cadence CDBA format. The library can be installed in

Cadence AMS Virtuoso Environment by simply adding the library through Li-

brary Manager. Default values of parameters specified at the cell level can be

overridden by specifying parameter values at the instance level which can be done

56 3. AMS Verification Library

Figure 3.15: Schematic of Example 3.3

through symbols in Cadence Virtuoso. These parameters are called CDF (Compo-

nent Description Format). Detailed description can be found in Cadence reference

manuals [4]. We show in Figure 3.15 how symbols can be used to develop checker

networks. In Figure 3.16, we show one of our test case consisting of six LDOs and

associated verification networks built using AMS-VL modules.

Some of the main implementation issues are described in the following subsec-

tions.

3.4.1. Synchronization with the AMS Simulator

We use cross_events to check properties. The accuracy with which the predicates

are evaluated with the help of the cross_events is controlled by TimeTolearnce and

ValueTolerance parameters of the cross_events. The TimeTolerance parameter

specifies the maximum allowable error on the real time scale between the estimated

crossing point and the true crossing point and the ValueTolerance parameter spec-

ifies the maximum allowable error on real value scale between estimated crossing

point and the true crossing point. For example, the change in the truth value of

the predicate (V (out) > 2.0) can be monitored by the PredicateEvaluator module

with the help of the following cross event. Here match is a logic signal which is

asserted as soon as V (out) crosses 2.0 volts in the positive edge direction (denoted

by +1 in the cross statement below).

initial begin

match = 1’b0;

end

always @(cross(V(out) - 2.0, +1, TimeTolerance,

3.4. Tool Flow and Implementation Issues 57

Figure 3.16: LDO Test Case and associated Verification Networks

58 3. AMS Verification Library

ValueTolerance))

begin

match = 1’b1;

end

Consider the following property :

Example 3.6 : After Vin crosses 3.0 volts, Vout should cross 2.5 volts sometime

between 10µs and 20µs.

time

v
o
lt

s

time

v
o
lt

s

Vin Vin

Vout Vout

3ms 3ms

1.0

2.0

3.03.0

2.0

1.0

t1

t3
t2

Figure 3.17: Timing Diagram of Example 3.6

In this example, monitoring the time point when Vin crosses 3.0V is very im-

portant. The analog simulator uses its own proprietary heuristics to place the

simulation point along the timescale. As shown in the left side diagram of Fig-

ure 3.17, due to lack of sufficient simulation points near t2 where actual crossing of

3.0V of Vin takes place, the event cannot be detected with sufficient accuracy which

may give false report on the satisfaction / violation of the property. Point t1 is

too early and point t3 is too away. Using time tolerance and value tolerance

parameter of the cross_event construct of Verilog-AMS, we can force the analog

simulator to place a simulation point near the true crossing point. We show in

the right side timing diagram of Figure 3.17, how analog simulator may place

simulation points after using cross_events.

The use of cross events creates simulation overhead because the AMS simulator

has to insert additional simulation points to report the cross within the specified

value and time tolerance. The time and value tolerances in the PredicateEvaluator

and EventDetector modules should be carefully chosen by the user keeping in mind

that over constraining may lead to degradation in simulation performance.

3.4. Tool Flow and Implementation Issues 59

analog events

Input Signal

Threshold
Value

Vth

10µs 20µs 30µs 40µs
time

va
lu

e

Figure 3.18: Scenario for Property Checking in Parallel Threads

3.4.2. Spawning Threads for Overlapping Matches

It is often the case that multiple matches of a property overlap in time along a

simulation trace. In order to ensure that matches and violations are not missed,

the AMS-VL modules need to be able to handle such overlaps. The following

example illustrates one such scenario.

Example 3.7 : After vin crosses Vth, vout should cross V ′th sometime between 15µs

and 25µs.

Figure 3.18 shows the vin waveform, highlighting the places where it crosses Vth.

Since successive crossings happen earlier than the time interval of the property,

that is, [15µs, 25µs], this is a candidate situation where overlapping matches/failures

are possible. �

In AMS-VL, overlapping matches are handled by spawning a new thread when-

ever a module is triggered. This is necessary only in the Interval Operation Mod-

ules, that is, the modules representing the temporal operators. To implement this

feature, we have used the task construct and the fork-join construct of Verilog-

AMS. We present a code fragment of the EventuallyOperator module to explain

the implementation.

1 event trig_match;

2 event trig_fail;

3 always @(trig_match)

4 begin

5 TimeOfMatch[NumberOfStart] = $abstime;

6 match = 1’b1;

60 3. AMS Verification Library

7 @(cross(($abstime - (TimeOfMatch[NumberOfStart] +

8 KeepMatchHighTime)), +1, TimeTolerance)) ;

9 match = 1’b0;

10 end

11

12 always @(trig_fail)

13 begin

14 TimeOfFail[NumberOfStart] = $abstime;

15 fail = 1’b1;

16 @(cross(($abstime - (TimeOfFail[NumberOfStart] +

17 KeepMatchHighTime)), +1, TimeTolerance)) ;

18 fail = 1’b0;

19 end

20

21 task my_task();

22 begin

23 fork

24 begin : test_maxdelay_time

25 #MaximumDelay;

26 -> trig_fail;

27 disable test_expr;

28 end

29 begin : test_expr

30 #MinimumDelay;

31 if (expr)

32 ->trig_match;

33 else begin

34 wait(expr);

35 if(($abstime - TimeOfStart[NumberOfStart])

36 < MaximumDelay)

37

38 ->trig_match;

39 else

40 ->trig_fail;

41 end

42 disable test_maxdelay_time;

43 end

44 begin : start_again

45 @(posedge start);

46 if(NumberOfStart == MaxNumberOfStart)

47 NumberOfStart = 0;

3.4. Tool Flow and Implementation Issues 61

48 else

49 NumberOfStart = NumberOfStart + 1;

50 TimeOfStart[NumberOfStart] = $abstime;

51 my_task;

52 end

53 join

54 end

55 endtask

56

57 always @(posedge start)

58 begin

59 if(NumberOfStart == MaxNumberOfStart)

60 NumberOfStart = 0;

61 else

62 NumberOfStart = NumberOfStart + 1;

63 TimeOfStart[NumberOfStart] = $abstime;

64 my_task;

65 end

Explanation of the Code Fragment :

Initially, the module waits for an occurrence of start (line 57 - 65) and rest part

of the code remains inactive. As soon as the first start pulse comes, task my_task

is called upon. my_task (line 21 - 55) uses fork-join construct to generate three

concurrent monitoring threads. The first thread namely test_maxdelay_time (line

24 - 28) checks whether the MaximumDelay time has been elapsed after occur-

rence of start. The second thread namely test_expr (line 29 - 43) neglects the

first MinimumDelay time after occurrence of start. Then it starts looking for oc-

currence of expr. The third thread namley start_again, continuously looks for

another occurrence of start event so that no potential event is missed. This thread

makes the code reentrant. The thread test_expr, after waiting for MinimumDe-

lay, if finds expr, it asserts named event [3] trig_match else it keeps on waiting

for expr. As soon as it gets expr, it checks whether MaximumDelay is crossed or

not. If MaximumDelay is not crossed, it asserts named event trig_match else it as-

serts trig_fail and disables the thread test_maxdelay_time. The other thread i.e.

test_maxdelay_time if not disabled by test_expr, and MaximumDelay is crossed.

then asserts trig_fail and disables test_expr. The named events are impulse of

zero duration. As soon as trig_match is asserted (line 3 - 10), an impulse of dura-

tion KeepMatchHighTime is generated at match output else if trig_fail is asserted

(line 12 - 19), then an impulse of duration KeepMatchHighTime is generated at fail

output. Due to the interleaved execution of the above mentioned three threads,

every potential event can be detected and potential match/violation of a property

62 3. AMS Verification Library

can be reported. �

3.5. Simulation Results

We studied the verification of three industrial test cases, all of which are from

the power management domain. Test Case I contained six Low Drop-Out (LDO)

regulators. For this circuit, monitors for 28 properties (see Appendix B.3) were

developed using AMS-VL. Test Case II contained two Buck regulators, and we de-

veloped monitors for 10 properties (see Appendix B.4) using AMS-VL. Test Case

III was an Integrated Circuit having four LDOs and one Buck regulator. We de-

veloped monitors for 33 properties (see Appendix B.5) in AMS-VL for this circuit.

Each property required a carefully selected network of AMS-VL modules. More-

over, in all of these cases, auxiliary functions were developed and used seamlessly

with the AMS-VL modules. The approximate number of cross_events encoun-

tered are 248 for the LDO circuit, 100 for the Buck regulator circuit and 600 for

the Integrated circuit. For each of the above mentioned testcase, we assume that

the testbench is given to us and the testbench has complete coverage. For detail

of the testcases, please see Appendix B.

Table 3.27 shows the overhead incurred by the simulator towards handling the

auxiliary functions and the AMS-VL modules. The simulations were carried out on

a 2.33 GHz, Intel-Xeon server with 32GB RAM using Cadence® irun. Table 3.28

reports some details about the circuits that are used as test cases in Table 3.27.

Table 3.27: CPU Time for Simulations of Circuits

Cross Event Sim CPU Time (secs) Over-
Precision Time head

time value Design + Design + (%)
(sec) (V) (µsec) Design Aux Aux Func +

Func Prop Check

Test Case I: LDO Circuit
1e-9 1e-6 700 83.89 84.51 97.12 15.77
1e-6 1e-4 700 83.89 84.51 96.01 14.45
1e-4 1e-3 700 83.89 83.51 95.42 13.75

Test Circuit II: BUCK Circuit
1e-9 1e-6 500 90.25K 92.31K 98.05K 8.65
1e-6 1e-4 500 90.25K 92.31K 97.78K 8.35
1e-4 1e-3 500 90.25K 92.31K 97.66K 8.22

Test Case III: IC Netlist
1e-9 1e-9 600 75.44K 75.82K 81.24K 7.69
1e-6 1e-4 600 75.44K 75.82K 81.09K 7.49
1e-4 1e-3 600 75.44K 75.82K 80.89K 7.23

The following observations may be made from the experimental results:

3.6. Concluding Remarks 63

Table 3.28: Description of the Testcases

Test No. of No. of No. of No. of
Cases Nodes Transistors Capacitors Resistors

LDO circuit 8604 2016 5166 7608
BUCK circuit 3586 4910 700 990

IC Netlist 7529 3799 3794 5567

1. The overhead of property checking is non-trivial, but the overhead becomes

marginal with increase in the size of the circuits. For example, the LDOs are

lightweight circuits as compared to buck regulators, and hence the overhead

is more visible for LDOs as compared to buck regulators and PMUs.

2. It is interesting to see that the auxiliary functions have an insignificant

contribution in the overhead. The AMS-VL modules are directly responsible

for the overhead. This is largely due to the cross events that the AMS-VL

modules introduce, thereby increasing the number of simulation points near

the occurrences of those events.

3.6. Concluding Remarks

We believe that the library based verification approach will find acceptance in in-

dustrial practice. In the AMS domain, auxiliary functions appear to be significant

value, and AMS-VL modules can be used seamlessly with auxiliary functions. The

current version of AMS-VL is compatible with all mixed mode simulation plat-

forms which support Verilog-AMS. Our results show that AMS-VL modules do

have simulation overhead, but we believe that the online debugging capability that

AMS-VL monitors provide will outweigh the simulation overhead.

Chapter 4

Verification of Simulation Relations

A hybrid system typically consists of a digital controller which interacts with an

analog environment called plant. Embedded digital control is widely used in a

variety of hybrid system domains, including automotive control, avionic control,

medical instrumentation, robotics etc. One of the main challenges in designing

controllers with analog environments is in modeling the interaction between the

controller and the plant, which is essentially a discretized version of the control al-

gorithm. The specification of a controller for a complex hybrid system is typically

developed after analyzing the control algorithm in detail. Some of these controllers

can be modeled as a transition system (or automaton) labeled with analog predi-

cates defined over real valued variables. In this work, we study a symbolic method

to find simulation relations between such predicate labeled transition systems.

The development of a digital controller for a hybrid system typically consists

of two phases, namely:

1. The modeling phase. In this phase the control algorithm is typically modeled

in a simulation platform (such as Simulink/stateflow) and evaluated with

hybrid models of the plant. There exists formalism like hybrid automata [16]

for modeling the dynamics of the plant, a significant volume of literature on

formal analysis of hybrid system models [15, 16, 41, 42], and a wide arsenal

of tools [62] that support such modeling styles. The modeling phase yields

a high level abstract specification of the controller, which is typically an

automaton that reads an abstract view of the plant and drives specific control

outputs to the plant. We shall refer to this automaton as the specification

automaton.

2. The implementation phase. The actual implementation of the controller

starts with the specification automaton as the reference. For controllers that

are implemented in hardware, this step is the actual circuit design step.

For controllers that are implemented in a embedded computing platform,

this step is a refinement step, where implementation specific details are con-

65

66 4. Verification of Simulation Relations

sidered. The implementation phase yields a discrete finite state machine,

typically having many more states than the specification automaton. We

shall refer to this state machine as the implementation automaton.

In order to demonstrate the difference between the specification automaton and

the implementation automaton, let us consider the simple task of designing a

controller for a pump that is switched on/off depending on the level of water in a

tank. The plant consists of the pump and the model for the consumption pattern

from the tank, that is, the plant models the dynamics for water consumption

from the tank and the rate at which the water is filled up when the pump is

running. Based on the analysis of the consumption patterns and the refilling

rates, the control algorithm found suitable is shown in Figure 4.1(a) (same as

Figure 1.2, reproduced for ease of understanding). This automaton models the

following strategy:

1. P1 : If the water level, w, is below 10 units, then the controller switches on

the pump.

2. P2 : If the water level, w, is above 85 units, then the controller switches off

the pump.

The controller takes its decisions based on the truths of the predicates, (w < 10)

and (w > 85). It is important to note that it does not need to see how the water

level rises and falls, that is, the dynamics of consumption and refilling is not visible

to the controller, though the control algorithm was designed in the modeling phase

taking these dynamics into consideration. The control algorithm is designed to

take its control decisions (such as switching on/off the pump) based on an abstract

view of the plant that it controls. Such controllers are quite common in various

application domains. We shall refer to predicates like (w < 10) as predicates over

real variables (PORVs). The formal definition of PORVs has been presented later.

The implementation of the controller needs to take into consideration various

other aspects that may require refinement of the specification. For example, in

order to accommodate discrepancies in the sensing of the water level, an imple-

mentation may choose to switch on the pump whenever the water level falls below

15 units. If the role of the controller is to ensure that the water level remains

above 10 units at all times, then this is an acceptable choice. On the other hand,

if a controller does not switch on the pump even when the water level is below

10 units, then the controller is not acceptable. This definition of acceptability is

based on our intuitive understanding that the role of the controller is to main-

tain the water level above 10 units, though this does not formally follow from the

specification automaton. We shall return to this discussion later.

67

Figure 4.1(b) and Figure 4.1(c) show two implementation strategies for the

water tank controller. These controllers have additional states corresponding to

other aspects of control as explained below:

1. The Off state of the pump has two variants, namely Hibernate and Deep

Sleep. Once the pump enters the Hibernate state (shown as (Off,1)), where

the pump is Off, it starts a timer. If the water level goes below the threshold

before the timer completes its count, then the pump is switched on. But if

the water level does not go below the threshold before and timer completes

its count, then the controller goes to the Deep Sleep state (shown as (Off,2)),

where the pump is still Off. From the Deep Sleep state, the pump will go to

On state once the water level falls below the threshold.

2. The On state of the pump too has two variants. When the pump is switched

on, the rate of water filling may be kept high for a certain time which will

be indicated by a timer signal. Let us name this state High Rate (shown as

(On,1)) where the pump is on. If the upper threshold of the water level is

reached before the timer completes its count, the controller switches off the

pump. If the timer completes its count before the upper threshold is reached,

then the filling rate is lowered and the controller moves to the Low Rate state

(shown as (On,2)). Once the water level reaches the upper threshold, the

pump is switched Off.

It may be noted that the controllers shown in the figures are not actually concerned

with timing. The timer are external – the controller only reads the timeout signals

and asserts the signals for setting the timers.

Our task is to determine whether the implementation automata shown in Fig-

ure 4.1(b) and Figure 4.1(c) are acceptable with respect to the specification au-

tomaton. It is important to note that the PORVs labeling the specification au-

tomaton are not identical to the PORVs labeling the implementation automata.

Therefore, if we consider sequential equivalence between these automata with the

propositions and PORVs as labels, then none of the two implementation automata

are equivalent to the specification automaton.

Our main point of difference with sequential equivalence checking of labeled

transition systems is in studying the relation between the PORVs. For example

any valuation of w that satisfies the PORV (w < 10) also satisfies the PORV

(w < 15), and no valuation of w that refutes the PORV (w < 15) satisfies the

PORV (w < 10). Therefore if we maintain the water level above 15 units, it

automatically guarantees that the water level stays above 10 units. Such an in-

tuitive understanding leads us to conclude that the implementation automata in

68 4. Verification of Simulation Relations

q0/ Offstart

q1/ On

w < 10

w ≥ 10

w > 85

w ≤ 85

(a) Specification

p0/ Off,1start p1/ On,1

p2/ Off,2 p3/ On,2

w < 15

w ≥ 15 ∧ ¬a

w
≥

15
∧
a

w > 80

w ≤ 80 ∧ b

w
≤

80
∧
¬
b

w ≥ 15

w
<
15

w
>
80

w ≤ 80

(b) Implementation 1

p0/ Off,1start p1/ On,1

p2/ Off,2 p3/ On,2

w < 5

w ≥ 5 ∧ ¬a

w
≥

5
∧
a

w > 80

w ≤ 80 ∧ b

w
≤

80
∧
¬
b

w ≥ 5 ∧ ¬c

w
<
5

w
>
80

w ≤ 80

(c) Implementation 2

Figure 4.1: A Specification and Two Implementations

Figure 4.1(b) is acceptable with respect to the specification automaton, but the

implementation automata in Figure 4.1(c) is not acceptable.

Such intuitive definition of acceptability is not necessarily correct. For example,

it could be the case that for some special type of pump it is mandatory to keep

the pump off for some specific period of time before it can be switched on again.

The consumption pattern for the tank may be such that the time taken for the

water level to fall from 85 to 10 is less than the this required shutoff period. We

may therefore choose to relax the guard (w < 10) to (w < 5) in order to allow

more time for the pump to come out of its shutoff mode. This is a requirement

that is not automatically captured from the specification automaton, just as our

intuitive understanding that the water level has to be maintained between 10

and 85 units does not follow from the specification automaton. Therefore the

permissible direction in which the PORVs in the specification can be refined in

the implementation has to be explicitly given by the user, for us to be able to

determine computationally whether an implementation automaton is acceptable

with respect to the given specification automaton. We shall refer to these as

refinement directives.

This chapter defines the formal models for the specification automaton with

refinement directives and the implementation automaton. The chapter presents

the definition of simulation relations between the specification and implementation

automata, and presents formal methods for computing such relations.

The chapter is organized as follows: In Section 4.1, we describe the formal

model of computation and formally define path based simulation relation in the

context of PORV labeled transition systems. In Section 4.2 we explain the trans-

formation steps required to map the proposed simulation relation finding problem

4.1. Simulation Relation Finding Methodology 69

to the Kanellakis-Smolka algorithm. Section 4.3 concludes the chapter.

4.1. Simulation Relation Finding Methodology

Here we present our model of computation formally. Then, we explain the pro-

posed algorithm described for simulation relation finding.

4.1.1. Formal Model of Computation

In this section we present the formal definition of simulation relations for predicate

labeled transition systems.

Definition 4.1.1 [Predicate Over Real Variables] : A predicate over a set of

real valued variables V = {x1, x2, . . . , xn} is defined by a n tuple 〈 α1, α2, . . . , αn

〉 ∈ Rn and a relational operator ∼ ∈ {>, ≥}. The PORVs represent inequalities

of the form (α1x1 + α2x2 + . . . + αnxn + c) ∼ 0 where c is any constant and c

∈ R. �

Definition 4.1.2 [LTS with PORV label] : A controller is a labeled transition

system (LTS) defined as a 7-tuple :

G = 〈 Q, I, δ, Q0, AP, var, L 〉

where:

• Q is the set of the states of the controller.

• Q0 ⊆ Q is the set of initial states.

• AP is the set of atomic propositions (labels).

• var is the set of real variables.

• I = IB ∪ IPORV is the set of inputs of the controller, where IB is the set of

Boolean signals and IPORV is the set of PORVs over var.

• δ ⊆ Q × 2I × Q is the transition relation.

• L : Q → 2AP is a function for labeling the states in Q with propositions in

AP. �

In our problem, both the specification and implementation are given as LTSs

with PORV labels. The implementation is a refinement of the specification. In

digital designs, refinement means that every run of the implementation is also a

run of the specification. In our case, the PORVs labeling the specification and

the PORVs labeling the implementation are not necessarily the same and hence

70 4. Verification of Simulation Relations

we cannot compare two runs by studying their labels. The refinement directives,

as defined below, give us the necessary condition for comparing the runs of the

specification and the implementation.

The LTS for the specification is annotated with refinement directives that in-

dicate the admissible directions in which input PORVs can be strengthened or

relaxed in the implementation. For example, in Figure 4.1(a), the PORV labeling

the transition from Off to On state i.e w < 10 can be weakened to w < 15 in an

implementation (to allow aberration for reading the value of w) and the PORV

w ≥ 10 labeling the self loop at the Off state has to be strengthened to w ≥ 15 as

shown in Figure 4.1(b). This does not follow automatically from the automaton of

Figure 4.1(a) and needs to be explicitly specified by the user. Formally, a PORV

α is stronger than a PORV β if α ⇒ β and similarly if PORV α is weaker than

PORV β, then β ⇒ α. Formally, a refinement directives, γ is a function of the

form :

γ : H → {W,S}

where H is the guard condition for state transition sk to sj i.e. sk
H
→ sj, H =

∧
αl,

where αl ∈ Is. Here W presents weakening and S presents strengthening. We use

Gs = 〈 Qs, Is, δs, Qs
0, AP

s, vars, Ls, γ 〉 and Gi = 〈 Qi, I i, δi, Qi
0, AP

i, vari, Li

〉 for the LTS of the specification and the LTS of the implementation respectively.

q0/ Offstart q1/ On

γ : (w < 10)→ W

γ : (w ≥ 10)→ S

γ : (w > 85)→ W

γ : (w ≤ 85)→ S

Figure 4.2: Specification LTS Annotated with Refinement Directives γ

Example 4.1 : As an example, we define the constituents of the tuple corre-

sponding to the specification LTS in Figure 4.2 as follows:

• Qs = {q0, q1}

• Qs
0 = {q0}

• APs = {Off, On}

• vars = {w}

4.1. Simulation Relation Finding Methodology 71

10

Implementation Off → On

threshhold can be set
in the shaded region
i.e. threshold is weakened

Threshold_Value6040

w < 10→ W

20 30 50

(a) Off → On Threshold

Implementation On → Off

threshhold can be set
anywhere in the shaded region
i.e. threshold is weakened

w > 85→ W

10 20 30 40 50 60 70 80 90Threshold_Value

(b) On → Off Threshold

Figure 4.3: Zone of Interest of Implementation PORVs

• IsB = ∅ and IsPORV = {w < 10, w > 85, w ≤ 85, w ≥ 10}

• δs is as illustrated in the Figure 4.1(a).

• Ls(q0) = {Off} and Ls(q1) = {On}

• γ : {(w < 10) → W}, {(w > 85) → W}, {(w ≤ 85) → S} and {(w ≥ 10)

→ S}. The weakening zone of the PORVs w < 10 and w > 85 are shown in

the Figure 4.3(a) and Figure 4.3(b) respectively. �

Definition 4.1.3 [Path Fragment in LTS] A finite path fragment π′ of a LTS

is a finite state sequence q0, e0, q1, e1, . . . , qn such that qi
ek→ qi+1 ∀0 ≤ i ≤ n, where

n ≥ 0 and k ≥ 0, ek is the transition guard condition. An infinite path fragment

π is an infinite state sequence q0, e0, q1, e1 such that qi
ek→ qi+1 ∀i > 0 and

k ≥ 0. �

Definition 4.1.4 [Maximal and Initial Path Fragment in LTS] A maximal

path fragment is either a finite path fragment that ends in a terminal state or an

infinite path fragment. If a path fragment starts in an initial state i.e. q0 ∈ Q0,

then it is called initial path fragment.

A maximal path fragment is a path fragment that cannot be prolonged : either

it is infinite or it is finite but ends in a state from where no more transition is

possible. �

Definition 4.1.5 [Path in LTS] : A path of a LTS G is an initial, maximal path

fragment.

We indicate a path in specification LTS by πs and a path in implementation

LTS by πi. We have shown paths of implementation LTS in Figure 4.4(c), and

Figure 4.4(d). We show corresponding paths of specification LTS in Figure 4.4(a),

72 4. Verification of Simulation Relations

q0/ Off

start

q1/ On

e0 : w < 10

e1 : w ≥ 10

e2 : w > 85

e3 : w ≤ 85

(a) Path 1 of Gs

q0/ Off

start

q1/ On

e0 : w < 10

e1 : w ≥ 10

e2 : w > 85

e3 : w ≤ 85

(b) Path 2 of Gs

p0/ Off,1 start p1/ On,1

p2/ Off,2 p3/ On,2

w < 15

f0 : w ≥ 15 ∧ ¬a

f 1
:
w
≥

15
∧
a

w > 80

w ≤ 80 ∧ b
w
≤

80
∧
¬
b

f2 : w ≥ 15

w
<
15

w
>
80

w ≤ 80

(c) Path 1 of Gi

p0/ Off,1 start p1/ On,1

p2/ Off,2 p3/ On,2

f6 : w < 15

f0 : w ≥ 15 ∧ ¬a

f 1
:
w
≥

15
∧
a

f7 : w > 80

f3 : w ≤ 80 ∧ b

f 4
:
w
≤

80
∧
¬
b

f2 : w ≥ 15

f 9
: w

<
15

f
8
:
w
>
80

f5 : w ≤ 80

(d) Path 2 of Gi

πi
1 = {p0, f0, p0, f1, p2, f2, p2, . . . } in 4.4(c) and corresponding πs

1 =
{q0, e1q0, . . . } in 4.4(a). .

Figure 4.4: Paths in Specification and Implementation LTS

and in Figure 4.4(b) respectively. Let Paths(Gs) denote the set of all paths in Gs

and Paths(Gi) denote the set of all paths in Gi.

Let Σ = IB ∪ var ∪ AP denote the set of the variables of the controller.

IB ∪ var contains the input variables and AP represents the set of the outputs

asserted by the controller. We use Σs and Σi to denote the set of variables for

specification LTS and implementation LTS respectively.

Definition 4.1.6 [Signal Trace] : A signal trace or simply a trace of the infinite

path fragment π = q0, e0, q1, e1, . . . of a LTS, σ, is an infinite sequence σ0, σ1, . . .

where each σi ∈ 2IB × R|var| × 2AP . In other words, σ is an infinite sequence

of valuations of the variables in Σ or the induced finite or infinite word over the

alphabet 2IB × R|var| × 2AP . �

We use σs and σi to denote a trace of a specification LTS and a trace of an

implementation LTS respectively. We denote the elements of an infinite sequence

4.1. Simulation Relation Finding Methodology 73

in the specification LTS by σs
i and of an implementation LTS by σi

k. Since the

valuations of the variables in var are real valued, there can be uncountably infinite

traces in the specification LTS as well as in the implementation LTS.

Example 4.2 : Following is an example trace of the implementation LTS of Fig-

ure 4.4(d) and the path generated is p0, f0, p0, f1, p2, f9, p1, f3, p1, f3, p1, f4, p3, f5,

p3, f8, p0, . . . :

σi = {w = 20, Off
︸ ︷︷ ︸

σi
0

}, {w = 16, Off
︸ ︷︷ ︸

σi
1

}, {w = 15.5, Off
︸ ︷︷ ︸

σi
2

}, {w = 14, On
︸ ︷︷ ︸

σi
3

},

{w = 9, On
︸ ︷︷ ︸

σi
4

}, {w = 60, On
︸ ︷︷ ︸

σi
5

}, {w = 70, On
︸ ︷︷ ︸

σi
6

}, {w = 78, On
︸ ︷︷ ︸

σi
7

}, {w = 81, Off
︸ ︷︷ ︸

σi
8

},. . .

Definition 4.1.7 [Sim(πi,σ)] : A trace σ = σ0, σ1, σ2, . . . models a path πi =

qi0, e
i
0, q

i
1, e

i
1, . . . of Gi if the following conditions hold good :

1. for all k, the set of atomic propositions that are true in σk exactly match

with the set of atomic propositions that are true in state qik.

2. for all k, the valuation of real valued variables in each σk, make the transition

guard condition α of eik true where qik
α
→ qik+1.

In Example 4.2, we show a trace σ which generates a path πi in the implemen-

tation Gi of Figure 4.4(d) such that Sim(πi,σ) is true. We denote the set of all

traces such that Sim(πi,σ) is true by Traces(Gi).

Definition 4.1.8 [Sim(πs,σ, γ)] : A trace σ = σ0, σ1, σ2, . . . models a path πs

= qs0, e
s
0, q

s
1, e

s
1, . . . of Gs under a given refinement directives γ if the following

conditions hold good :

1. for all k, the set of atomic propositions that are true in σk exactly match

with the set of atomic propositions that are true in state qsk.

2. for all k, the valuation of real valued variables in each σk is such that they

satisfy the weakening or strengthening refinement directive on the transition

guard condition β of esk where qsk
β
→ qsk+1.

The Condition 2 of Definition 4.1.8 implies the following :

1. If the refinement directives is W, then the valuation of the real valued vari-

ables will not make the guard conditions of specification LTS true in proper

sense, rather, the refinement directives γ will allow some additional room for

the trace to satisfy the guard condition to trigger the associated transition.

74 4. Verification of Simulation Relations

2. If the refinement directives is S, then the valuation of the real valued variables

will not make the guard conditions of specification LTS false in proper sense.

Consider the trace σi of Example 4.2. For the trace component σi
3, the valua-

tion of real valued variable w is 14 which does not make the labeling predicate e0

of Figure 4.4(b) true in proper sense. But if we bring the refinement directives in

the scenario, then as shown in Figure 4.2, e0 can be weakened and hence, the value

of w satisfy e0 under the specified γ. Hence, it enables the transition from q0(Off

State) to q1(On State). Similar is the case for the trace component σi
8 which under

specified γ (as shown in Figure 4.2) satisfies the labeling predicate e2 and hence

enables the transition from q1(On State) to q0(Off State).

Definition 4.1.9 [Gi � Gs] : Gi � Gs with respect to a given refinement directives

γ iff forall traces σ ∈ Traces(Gi), Sim(πi,σ) true implies there exists a path πs ∈

Paths(Gs) such that both the conditions of the Definition 4.1.8 holds good i.e.

Sim(πs,σ, γ) is true. Precisely, ∀σ ∈ Traces(Gi), Sim(πi,σ) ⇒ ∃πs ∈ Paths(Gs),

Sim(πs,σ, γ) is true.

Since the specification and implementation have uncountably infinite traces,

it is nontrivial to verify whether Gi � Gs. Algorithms like Kanellakis-Smolka and

Paige-Tarjan rely on a fix-point convergence which is guaranteed by the finite

nature of the state space. The main contribution of this chapter is to define a

notion of path-based simulation equivalence between our PORV labeled transition

systems and prove that this relation is necessary and sufficient for the relation

Gi � Gs.

Definition 4.1.10 [SimA(πi,πs,γ)] : A path πs ∈ Paths(Gs) simulates a path

πi ∈ Paths(Gi) if the following conditions hold good :

1. for all k, the set of atomic propositions that are true in qik and the set of

atomic propositions that are true in qsk exactly match i.e. Li(qik) = Ls(qsk).

2. for all k, qik
α
→ qik+1 and qsk

β
→ qsk+1, the refinement directives γ holds good

between the guard conditions α and β.

For example, the path πs of Figure 4.4(b) and path πi of Figure 4.4(d) is related

by the SimA(πi,πs,γ).

Definition 4.1.11 [Gi
A

� Gs] : Gi
A

� Gs iff ∀πi ∈ Paths(Gi), ∃πs ∈ Paths(Gs)

such that SimA(πi,πs,γ) holds good.

Theorem 4.1.1 [Simulation Relation] : Gi � Gs iff Gi
A

� Gs.

4.1. Simulation Relation Finding Methodology 75

Proof :

Suppose, Gi
A

� Gs. By Definition 4.1.11, each path πi
k ∈ Paths(Gi) has a cor-

responding simulating path πs
j ∈ Paths(Gs) such that SimA(πi,πs,γ) holds good.

Further by Definition 4.1.10, for each such path πi
k and πs

j , the set of atomic

propositions labeling the states of the paths match and the refinement directives,

γ, holds good between the guard conditions. Hence, a trace σl ∈ Traces(Gi) such

that Sim(πi
k, σl), will also make the same set of atomic propositions true in πs

j

as πi
k and as γ holds, the values of real valued variables in σl will satisfy the

guard conditions of πs
j . Arguing similarly, for every such σl ∈ Traces(Gi) such

that Sim(πi
k,σl) will make Sim(πs

j ,σl, γ) true i.e. in other words, ∀σl ∈ Traces(Gi),

Sim(πi
k,σl) ⇒ ∃πs

j ∈ Paths(Gs) such that Sim(πs
j ,σl, γ) is true for given γ, which

is Definition 4.1.9 and hence Gi � Gs.

For the other direction, suppose Gi � Gs. Consider a trace σl ∈ Traces(Gi)

such that Sim(πi
k,σl) for any k. By Definition 4.1.9, Sim(πs

j ,σl,γ) should hold good.

This immediately implies (a) Li(qim) = Ls(qsm) and (b) the refinement directives γ

between the transition guard conditions hold good (as Sim(πs
j ,σl,γ) and Sim(πi

k,σl)

both are true), i.e. SimA(πi
k,π

s
j ,γ) is true. Arguing similarly, this holds for any

σl ∈ Traces(Gi) such that Sim(πi
k,σl) and Sim(πs

k,σl,γ) are true. This implies

that for every path πi
k ∈ Paths(Gi), there exists a path πs

j ∈ Paths(Gs) such that

SimA(πi
k,π

s
j ,γ) is true. This is the Definition 4.1.11 and hence Gi

A

� Gs. �

The above theorem proves that checking Gi
A

� Gs is sufficient to find out the

simulation relation and we extend the KS algorithm to check that. We define two

Boolean operators namely Smooth and Rename [22] which will be used later in the

implementation of the proposed symbolic simulation relation finding algorithm.

Definition 4.1.12 [Smooth Function] : Let f be a Boolean function. The

smoothing of f by X = (xi1 , xi2 , . . . , xip) is defined as

Smooth(xi1 , xi2 , . . . , xip)(f) = Smoothxi1
◦ · · · ◦ Smoothxip

(f)

Smoothxij
(f) = fxip

+ fxip

fxi
(x1, . . . , xi−1, xi, xi+1, . . . , xr) = fxi

(x1, . . . , xi−1, 1, xi+1, . . . , xr)

fxi
(x1, . . . , xi−1, xi, xi+1, . . . , xr) = fxi

(x1, . . . , xi−1, 0, xi+1, . . . , xr)

Logically, the smoothing operator performs existential quantification on the

smoothed variables : Smooth(xi1
,xi2

,...,xip)
(f) =∃xip . . .∃xip(f)

Definition 4.1.13 [Rename Function] : Let f be a Boolean function. Rename

of array X = [x1, x2, . . . , xp] by array Y = [y1, y2, . . . , yp] in f noted as RenameY←X

is defined as

[Y ← X]f ≡def RenameY←X

(
∧

i∈p

(yi ⇐⇒ xi) ∧ f
)

76 4. Verification of Simulation Relations

Given two LTS Gs and Gi, our problem is to check whether Gi � Gs. The

following points highlight the difference between this problem and the related

problems discussed in Section 2.3.

• Our simulation relation finding problem is not concerned with the continu-

ous evolution of the real valued variables over time. This observation distin-

guishes our problem from the body of literature on equivalence checking of

hybrid systems.

• In our simulation relation finding problem, the PORVs used in the specifica-

tion LTS are not the same as the PORVs used in the implementation LTS.

However they are related by virtue of being defined over the same set of real

valued variables. Therefore, the simulation relation task must consider the

relation between the PORVs of specification LTS and the implementation

LTS which separates our problem from standard simulation relation finding

problem of two state machines defined over atomic propositions.

To the best of our knowledge, the simulation relation finding problem presented

in this work has not been studied in existing literature.

4.2. Methodology and Tool Flow to find Simula-

tion Relation

Let us be given the specification LTS Gs and the implementation LTS Gi respec-

tively. δs be the transition relation of Gs and δi be the transition relation for

Gi. Let piGs ∈ AP
s be the atomic propositions that label specification LTS states

and pkGi ∈ AP
i be the atomic propositions that label implementation LTS states.

Let Qs
0 be the set of initial states of Gs and Qi

0 be the set of initial states of Gi

respectively.

4.2.1. Pre-Process Steps

Let V alidStatePairsAtoms be the set of states which contains those pairs of

states from Gi and Gs whose labeling atomic propositions matches. The step has

been depicted graphically in the Figure 4.5. Formally,

V alidStatePairsAtoms =
∧

k

(

(pkGi × pkGs) ∨ (pkGi × pkGs)
)

=
∧

k

(
pkGi ⇔ pkGs

)

=
∧

k

(
pkGi ⊙ pkGs

)

4.2. Methodology and Tool Flow to find Simulation Relation 77

Transition Systems

P/ Off Q/ On

A : w < 10

(a) Specification

R/ Off S/ On

B : w < 15

(b) Implementation 1

T/ Off U/ On

C : w < 5

(c) Implementation 2

State Propositions

• Atomic Propositions : On and Off

Valid State Pairs

• P & R is a valid state pair.

• P & T is a valid state pair.

Figure 4.5: Pre-Process Step 1

We explain the idea with the help of the example shown in Figure 4.5. There are

two states in the specification and two states in each of the two implementations,

one state is labeled with On and another state is labeled with Off. Since, state

pairs {P , R} and {P , T} are labeled with same atomic propositions namely Off.

hence they are Valid State Pairs w.r.t atomic propositions. Arguing in a similar

way, state pairs {Q, S} and {Q, U} are labeled with atomic proposition namely

On and hence they form another set of Valid State Pairs.

A state qsi ∈ G
s and a state qik ∈ G

i may not be consistent with each other

even if they match in the atomic proposition labels because of the violation of

the weakening or strengthening (refinement directives γ) of guard condition of

the outgoing edges. The simulation relation finding algorithm sees the PORVs as

just propositions and hence incapable of detecting such states where such violation

takes place. The process has been depicted in the Figure 4.6. In order to eliminate

such states where the refinement directives γ for the guards of the edges are

violated, we do the following :

• We take IsPORV ∪ I iPORV i.e union of all the PORVs labeling Gs and Gi and use

an SMT solver like MALL [68] to compute the set of minimal unsatisfiable

cores. Let us name the minimal unsatisfiable cores as UnSATCore.

• Let P i
Gs
∈ IsPORV which labels the guard α of an edge of Gs and P k

Gi
∈

I iPORV which labels the guard β of an edge of Gi. Now depending upon the

annotation of α in the refinement directives γ i.e whether they are W or S

annotated, (qik, qsi) ∈ V alidStatePairsAtoms will be indeed a valid state

pair w.r.t labeling PORVs, if the following conditions hold good :

78 4. Verification of Simulation Relations

Transition Systems

P/ Off Q/ On

A : w < 10

(a) Specification

R/ Off S/ On

B : w < 15

(b) Implementation 1

T/ Off U/ On

C : w < 5

(c) Implementation 2

Minimal Unsat Cores

• Involving A and B : A ∧ ¬B

• Involving A and C : ¬A ∧ C

Valid State Pairs

• P & R is a valid state pair.

• P & T is not a valid state pair.

Figure 4.6: Pre-Process Step 2

– If α is S annotated, then

∧

k

P k
Gi
⇒
∧

j

P j
Gs

is TRUE

≡

(

¬

(
∧

k

P k
Gi

)

∨

(
∧

j

P j
Gs

))

is TRUE

hence,

¬

(

¬

(
∧

k

P k
Gi

)

∨

(
∧

j

P j
Gs

))

is Unsatisfiable

≡

(
∧

k

P k
Gi
∧ ¬

(
∧

j

P j
Gs

))

is Unsatisfiable

≡
∨

j

(
∧

k

P k
Gi
∧ (¬P j

Gs
)

)

= stateImplicationS is Unsatisfiable

For the state pair to be valid, the stateImplicationS ∈ UnSATCore

and (qik, q
s
i) ∈ V alidStatePairs.

But if stateImplicationS /∈ UnSATCore, then we discard that state

pair.

– If α is W annotated, then

∧

k

P k
Gs ⇒

∧

j

P j
Gi

is TRUE

4.2. Methodology and Tool Flow to find Simulation Relation 79

≡

(

¬

(
∧

k

P k
Gs

)

∨

(
∧

j

P j
Gi

))

is TRUE

hence,

¬

(

¬

(
∧

k

P k
Gs

)

∨

(
∧

j

P j
Gi

))

is Unsatisfiable

≡

(
∧

k

P k
Gs ∧ ¬

(
∧

j

P j
Gi

))

is Unsatisfiable

≡
∨

j

(
∧

k

P k
Gs ∧ (¬P j

Gi
)

)

= stateImplicationW is Unsatisfiable

For the state pair to be valid, the stateImplicationW ∈ UnSATCore

and (qik, q
s
i) ∈ V alidStatePairs.

But if stateImplicationW /∈ UnSATCore, then we discard that state

pair.

We explain the idea with the help of the example shown in Figure 4.6. We take

union of the input predicates for Specification and Implementation 1 i.e {w < 10}

∪ {w < 15} and supply it to MALL. We get the UnSATCore A ∧ ¬B. Now as

explained in the Example 4.1, PORV A is a W labeled i.e in the Implementation

1, the threshold value for this PORV can be increased (i.e. weakened). This

implies that Specification input PORV is stronger and its TRUTH should imply

the TRUTH of Implementation 1 PORV. Hence, ideally

A⇒ B is TRUE

≡ ¬A ∨B is TRUE

hence.

¬(¬A ∨B) is UnSAT

≡ (A ∧ ¬B) is UnSAT

We see that desired UnSAT is there in the computed UnSATCore and hence the

implication relation holds good. Hence, {P , R} remains to be a Valid State Pair.

Now we consider the other state pair from the specification and Implementation 2.

We supply the union of input PORVs i.e {w < 10} ∪ {w < 5} to MALL and get

the UnSATCore ¬A∧C. Like the previous case, the desired UnSAT is (A∧¬C).

80 4. Verification of Simulation Relations

Algorithm 5 Algorithm for Symbolic Simulation Equivalence Checking

Input : Qi
0, δ
′s, δ′i, V alidStatePairs

Output : (Ms, Mi) are Simulation Equivalent

while true do

V alidStatePairRenamed ← Renamex′←x,y′←y(V alidStatePair)
δglobal ← δ′s × δ′i

GlobalNextStatesReachable ← δglobal × V alidStatePairRenamed

NextStatesImpl ← V alidStatePair × δ′i

NextV alidStatesImpl ← NextStatesImpl × V alidStatePairRenamed

NextStatesImplNotConsidered ← NextV alidStatesImpl ×
GlobalNextStatesReachable

StatePairsTobeRemoved ← Smoothx′,y′ (NextStatesImplNotConsidered)
RefinedStatePair ← V alidStatePair × StatePairsTobeRemoved

if (V alidStatePair == RefinedStatePair) then

if (Qi
0) ∈ RefinedStatePair then

print Specification simulates Implementation
break

else

print Specification does not simulate Implementation
break

end if

else

V alidStatePair ← RefinedStatePair

end if

end while

But it is not contained in the computed UnSATCore and hence the implication

relation does not hold good. Hence, {P , T} cannot be a Valid State Pair.

Following the calculation of initial V alidStatePairs, we use the symbolic BDD

computation Algorithm 5 to refine V alidStatePairs until we reach a FixPoint.

If the FixPoint contains all the initial states of implementation Gi paired with

at least one initial state of specification Gs, then indeed specification simulates

implementation.

To apply the algorithm, we follow the standard method to convert a labeled

transition system to a Kripke Structure. We define the Kripke Structure corre-

sponding to a LTS as follows:

Definition 4.2.1 Kripke structure M equivalent to the controller G = 〈 Q, I, δ,

Q0, AP, var, L 〉 can be defined as follows:

M = 〈 Q′, I ′, δ′, Q′0, AP
′, var′, L′ 〉

where:

• Q′ = Q × 2I. We denote a state q′i ∈ Q′ as a pair 〈 qi, ai 〉, where qi ∈ Q

and ai ∈ 2I,

4.2. Methodology and Tool Flow to find Simulation Relation 81

• Q′0 = Q0 × 2I ,

• δ′ ⊆ Q′ × Q′ is the transition relation, such that (q′i, q
′
j) ∈ δ′ iff (qi, ai

︸︷︷︸

q′i

, qj, bi
︸︷︷︸

q′j

)

∈ δ, bi ∈ 2I ,

• AP ′ = AP ∪ I,

• L′ : Q′ → 2AP is a labeling function, such that L′(q′i) = L(qi) ∪ ai,

where q′i = (qi, ai). �

Annonated PORVs

Algorithm

Relation finding
Simulation

reln. checking

implication
∨ of UNSAT Cores

SMT Solver

I iPORV IsPORV

Specification Kripke Structure

Ms = 〈 Q′s, I ′s, δ′s, Q′s0 , AP ′s, var′s, L′s 〉

Implementation LTS

Gi = 〈 Qi, I i, δi, Qi
0, AP

i, vari, Li 〉

Q′i Q′s

ValidStatePairs

〈Q′i0 , δ
′i〉 δ′s

Specification LTS

Gs = 〈 Qs, Is, δs, Qs
0, AP

s, vars, Ls, γ 〉

Implementation Kripke Structure

Mi = 〈 Q′i, I ′i, δ′i, Q′i0 , AP
′i, var′i,L′i 〉

as per γ

Figure 4.7: Simulation Relation Finding Tool Flow

We use Ms = 〈 Q′s, I ′s, δ′s, Q′s0 , AP ′s, var′s, L′s 〉 for Kripke structure of

the specification LTS Gs andMi = 〈 Q′i, I ′i, δ′i, Q′i0 , AP
′i, var′i, L′i 〉 for Kripke

structure of the implementation LTS Gi

For example, the Kripke structure equivalent of the specification LTS of Fig-

ure 4.1(a), can be expressed as the tupleMs = 〈 Q′s, I ′s, δ′s, Q′s0 , AP ′s, var′s, L′s

〉 where,

• Q′s = {q0, q1} × 2{w<10,w>85,w≥10,w≤85}

• Q′s0 = {q0} × 2{w<10,w>85,,w≥10,w≤85}

• AP ′s = {Off, On, w < 10, w > 85, , w ≥ 10, w ≤ 85}

• L′s(q′si) = 





{Off} ∪ asi , q
s
i = q0

{On} ∪ asi , q
s
i = q1

82 4. Verification of Simulation Relations

where q′si = (qsi , a
s
i) �

The steps of the proposed symbolic BDD based simulation relation finding

methodology is shown in Figure 4.7.

4.3. Concluding Remarks

In this chapter we have proposed a formal methodology to check simulation rela-

tion between predicate labeled transition systems. We have implemented a sym-

bolic simulation relation finding algorithm by extending KS algorithm and have

shown the necessary transformation steps.

Chapter 5

Feature based Equivalence Check-

ing with AMS-VL over Simulation

Trace

In Chapter 4, we studied the problem of checking simulation relations between a

specification and implementation of digital controllers for hybrid systems. This

methodology does not work for comparing the hybrid system as a whole, which

consists of the controller and its analog environment. The demand for automating

the comparison between analog and mixed signal (AMS) models has been growing

in the circuit design community due to the ubiquitous use of analog components

in large scale digital integrated circuits.

In the AMS domain, equivalence is typically defined in terms of specific fea-

tures. In this chapter, we leverage the AMS-VL modules described in Chapter 3

to capture the features that form the basis of equivalence for a circuit family. The

block diagram of Figure 5.1 illustrates the general idea behind our approach.

M1

Model

M2

Model
Monitoring

Network

AMS-VL
+
Auxiliary

Report

Func.

Benches

Test

Figure 5.1: Conformance of Two AMS Models / Circuits

Two AMS circuits / models are simulated together with the help of the same

test bench. The output of the circuits are either directly connected to the AMS-

VL modules or to the auxiliary function modules. The combination of AMS-VL

modules and the auxiliary modules form the conformance checking network. The

83

84 5. Feature based Equivalence Checking with AMS-VL

features based on which we want to check conformance may be a simple temporal

behavior or may need to be calculated from the simulation trace with the help of

auxiliary functions. The conformance report will be generated by the AMS-VL

modules. In Section 5.1 we explain several topologies for finding conformance. In

this chapter we use equivalence and conformance synonymously. In Section 5.2

we explain the topologies with suitable examples consisting of LDOs and Buck

regulators.

5.1. Different topologies for Online Conformance

In this section we describe several topologies for online conformance checking based

on the combination of the AMS-VL modules and auxiliary function modules.

1. Topology-I :

M1

Model

Model

M2

Test

Benches
Comparison

Network

AMS-VL

Temporal

Network

AMS-VL

Report

Figure 5.2: Block Diagram of Topology-I

This is the most simple topology for conformance checking. We assume that

the two models of the AMS circuits are synchronized in time. In this case, the

models / circuits are simulated with the same test bench and the signals of

the output pins are compared in the comparison network to check if they are

within certain tolerance limits specified by the user and further it is checked

that the outputs remain within the tolerance limits over certain time period.

The later part is checked in the temporal network. This kind of conformance

checking network can only be used when the modes of operation of the two

AMS models / circuits are in perfect sync. But this is a very restricted

assumption and hence we refine this topology to Topology-II as shown in

Figure 5.3.

2. Topology-II :

In most of the cases, it may happen that the two models / circuits are not

synchronized in time and it may lead to improper comparisons of the output

signals over time. Hence, it is necessary to initiate the comparison only when

both of the AMS models / circuits are in same mode of operation. To do

5.1. Different topologies for Online Conformance 85

M1

Model

Model

M2

Test

Benches

Comparison

Network

AMS-VL

Temporal

Network

AMS-VL

Report

Network

AMS-VL

Sync

Figure 5.3: Block Diagram of Topology-II

that, we introduce a sync network along with the Topology-I of Figure 5.2.

The sync network will trigger the temporal network to check whether indeed

the temporal signals are within the tolerance limits over the desired time

duration.

3. Topology-III :

Comparison

AMS-VL

Network

AMS-VL

Sync
Network

M1

Model

M2

Model

Test
Report

Auxiliary

Block 1

Auxiliary

Block 2

Benches

Figure 5.4: Block Diagram of Topology-III

In practical scenarios, it may be the case that the property with respect to

which the conformance is desired, may not be a simple temporal property.

Some properties may need to be calculated from the temporal trace with the

help of the auxiliary modules, for example properties related to rise time,

settling time, frequency etc. needs to be calculated from the temporal signal

with some additional calculation on the temporal trace. For this we use this

topology. As shown in the Figure 5.4, the auxiliary blocks will calculate the

necessary features in the mode of interest. The sync network will trigger the

comparison network only when both of the circuits are in the same mode of

the operation so that the comparison network can compare between correct

auxiliary features. It may be noted that in this topology there is no online

comparison of temporal behaviors. Rather, we consider only those features

which are non-temporal in nature, such as rise time, settling time, dropout

voltage (of a LDO). These features are typically exhibited once during sim-

ulation and hence do not require a fully online comparison.

86 5. Feature based Equivalence Checking with AMS-VL

4. Topology-IV :

Network

AMS-VL

SyncM1

Model

M2

Model

Test

Auxiliary

Block 1

Auxiliary

Block 2

Benches

Temporal

Network

AMS-VL

Report

Comparison

Network

AMS-VL

Figure 5.5: Block Diagram of Topology-IV

In this topology, we can check those auxiliary features that have to be

checked over time. Here, the sync network triggers the temporal modules

when both the AMS models / circuits are in same mode of operation and

the feature has to be compared. This kind of topology is indeed required as

explained in the Example 5.4.

5.2. Examples of Conformance Checking Networks

In this section we explain the above mentioned topologies with the help of the

following examples.

5.2.1. Example of Topology-I

Consider the following example :

Example 5.1 When a LDO enters its regulatory mode of operation, the maximum

difference between the output voltage of the specification and the implementation

LDOs should not exceed ±0.05V for at least 20µs. We assume that the two models

enter the regulatory mode at the same time (which has to be enforced in the co-

simulation environment).

In this case, the feature is directly available from the temporal trace and hence

needs no auxiliary calculation. Also, as the models enter the regulatory mode at

the same time, no additional synchronization network is required. Hence, we use

Topology-I to check conformance w.r.t this property.

In this example, the ArithmeticOperator, PredicateEvaluators and the Bool-

Operator forms the comparison network to check if the output voltage difference

is within ±0.05V. We use EventdetectorDeglitched (derived module as shown in

Chapter 3, Example 3.1) to trigger the GlobalOperator module to check the tempo-

ral requirement. Since, the EventdetectorDeglitched compares the output of LDO1

with a static value to trigger the GlobalOperator, hence we make it a part of the

comparison network. GlobalOperator forms the temporal network.

5.2. Examples of Conformance Checking Networks 87

LDO1

LDO2

ArithmeticOperator

-

PredicateEvaluator
> -0.05V

PredicateEvaluator
< 0.05V

BoolOperator
∧

Eventdetector

Deglitched

Threshold : 3.2V
Direction : +1

GlobalOperator

start

expr

match

fail

Delay : 20 µs

Comparison Network
Temporal
Network

Figure 5.6: Monitoring Network for Example 5.1

5.2.2. Example of Topology-II

Consider the following example :

Example 5.2 While in the startup mode of operation, the difference between the

output voltages of the implementation and specification LDOs should remain within

±0.5V. We assume the normal steady state output voltage of the LDO is 3.5 Volts,

and the startup mode is indicated when the output voltage remains within 5%-95%

of steady state value. �

In this example the feature is directly available from the temporal simulation

data and needs no auxiliary calculations. But we have to use a synchronization

network to ensure that the comparison is done when the output voltages are

within 5%-95% of its steady state value. Hence we use Topology-II to check the

conformance.

As shown in the Figure 5.7, the PredicateEvaluators and the BoolOperators

form the synchronization network to indicate that both the LDOs are in start-up

mode of operation. The ArithmeticOperator, PredicateEvaluators and the BoolOp-

erator form the comparison network to check whether the difference of the output

voltage is within ±0.5 V. The PredicateAssert forms the temporal network which

generates the conformance report.

5.2.3. Example of Topology-III

Consider the following example :

Example 5.3 While going from start-up mode to PFM mode of operation, the

settling time of the implementation and the specification Buck regulator should not

differ by ±1µs. �

Unlike the Example 5.2, the feature i.e. the settling time is not directly avail-

able from the temporal simulation data and hence need to be calculated with the

88 5. Feature based Equivalence Checking with AMS-VL

LDO1

LDO2

PredicateEvaluator

PredicateEvaluator

BoolOperator BoolOperator

ArithmeticOperator

PredicateEvaluator

PredicateEvaluator

BoolOperator

PredicateEvaluator

PredicateEvaluator

BoolOperator

diff

diff

sync

sync

PredicateAssert
match

fail

ArithmeticOperator : -

> -0.5 V

< 0.5 V

> 0.175 V

< 3.325 V

< 3.325 V

> 0.175 V

Bool Operator : ∧

Bool Operator : ∧

Bool Operator : ∧

Synchronisation
Network

Network
Comparison

Bool Operator : ∧

Temporal
Network

Figure 5.7: Monitoring Network for Example 5.2

help of the auxiliary modules. Also, we need a synchronization network to make

sure that both the Buck regulators have entered into the PFM mode of operation

from the startup mode. Also we need a comparison network to check if the settling

time of the two Buck regulators are within the tolerance level or not. Hence, we

use the Topology-III. The detailed conformance checking network is shown in the

Figure 5.8.

SettlingTime1

SettlingTime2

<1µs

> -1µs

PredicateEvaluator

PredicateEvaluator

AritmeticOperator
-

Buck2

Buck1

FB1

FB2

BoolOperator
∧

BoolOperator
∧

Sync

value

EventuallyOperator
Min Delay : 0

start
expr

match
fail

Sync

value

Auxiliary

Modules

Sync

Network

Comparison
Network

Figure 5.8: Monitoring Network for Example 5.3

As shown in the Figure 5.8, the SettlingTime modules will calculate the settling

time of the output voltage at the FB pin and they constitute the auxiliary func-

5.2. Examples of Conformance Checking Networks 89

tion network. The ArithmeticOperator, PredicateEvaluators, BoolOperator and the

EventuallyOperator forms the comparison network. Here, EventuallyOperator does

not work as a temporal module rather as soon as it receives the synchronization

trigger from the synchronization network (formed by the single BoolOperator), it

checks only for once whether the difference between settling time is indeed within

the proposed band of tolerance. EventuallyOperator reports the conformance only

once after the synchronization trigger is received.

5.2.4. Example of Topology-IV

Consider the following example :

Example 5.4 In the PWM mode of operation, starting from beginning up to any

time point, the maximum difference between the frequency of oscillation at the

switching pin of specification and implementation Buck regulators should not exceed

500 Hz. �

In this example, frequency of oscillation is the feature of concern which is not

available immediately from the temporal simulation data of Buck regulators and

hence need to be calculated using some auxiliary modules. Further, it may be

the case, that even if both the models / circuits are stimulated using the same

testbench, they may not enter into the PWM mode of operation simultaneously.

Hence, if we do not synchronize the conformance checking network, then a mis-

leading report may be generated. Hence, we need auxiliary modules to calculate

the frequency of oscillation of PWM mode and also a synchronization network

which is available in the Topology-IV. We show the exact conformance checking

network in Figure 5.9 and an implementation in Cadence Virtuoso Environment

in Figure 5.10. We explain the network in detail in next paragraph.

PredicateAssert

start

expr

assertE

failE

trigger

exprt

FD2
in

FD1
in out

out

BoolOperator : ∧

ArithmeticOperator : -

in_1

in_1

BoolOperator : ∧

BoolOperator

in_2
in_1

assertE

FD : FrequencyDetector

PredicateEvaluator

ComparisonOperator : >
ThresholdValue : -5mV
PredicateEvaluator

ComparisonOperator : <
ThresholdValue : 5mV

assertE

assertE
exprt

Arithmetic

out
Operator

in_1

in_2

BoolOperator

in_2
in_1

assertE trigger

pfm_pd2

BUCK2

SW2

SW1

BUCK1

pfm_pd1

Figure 5.9: Monitoring Network for Example 5.4

90 5. Feature based Equivalence Checking with AMS-VL

Both the specification Buck regulator (BUCK1 in the Figure 5.9) and the im-

plementation Buck regulator (BUCK2 in the Figure 5.9), are simulated by the

identical testbench. Two FrequencyDetector auxiliary modules calculates the fre-

quency of switching at the SW pins and converts the frequency of oscillation in

an equivalent voltage output. When the signal pfm_pd is low, it indicates that

the corresponding Buck regulator is in PWM mode of operation. When the both

Buck regulators are in PWM mode of operation, the left most BoolOperator of

Figure 5.9 asserts its output and keeps it asserted until one of the Buck comes

out of the PWM mode. This BoolOperator is the required sync network as shown

in Figure 5.5. The output of this BoolOperator triggers the PredicateAssert mod-

ule which will check the conformance. The ArithmeticOperator calculates the

difference of the frequency of the two Buck regulators. The two PredicateEval-

uator modules check whether the difference of the frequency is within ±5 mV.

The combination of two PredicateEvaluators and the ArithmeticOperator form the

comparison network of Figure 5.5. If the difference is within the band of toler-

ance, the BoolOperator module in the right hand side will make its output asserted

which will be the expression to check for the PredicateAssert module. Following

the working principle of PredicateAssert, if the expression remain asserted till both

the Buck regulators are in PWM mode of operation, then they conform with each

other with respect to this property.

Figure 5.10: Schematic of Example 5.4

5.3. Concluding Remark 91

5.3. Concluding Remark

In this chapter we have shown several topologies to check conformance online

between two AMS models / circuits. We have shown with suitable examples how

the definition of the conformance between two AMS models / circuits can be

translated to a conformance checking network using the AMS-VL modules and

the auxiliary functions. As explained in Chapter 3, introduction of the additional

library modules will increase the simulation overhead but we believe that the online

conformance checking capability that the network of AMS-VL monitors provide

will outweigh the simulation overhead.

Chapter 6

Conclusion

In this chapter we summarize the contributions of this work and discuss some

possible directions for future research. The focus of this thesis has been on the

verification of AMS circuits and digital controllers for AMS circuits / models. To-

wards this goal, we have developed a library of modules that can be graphically

composed on a schematic to compose verification networks for different properties

to be verified over the simulation trace of the AMS circuits. We have also lever-

aged this library to develop conformance checking monitors between two AMS

circuits / models. We have also studied the verification of digital controllers for

analog/hybrid systems, and have proposed a symbolic methodology to check con-

formance of digital controllers of AMS circuits. The following section summarizes

our achievements.

6.1. Summary of Achievements

The thesis fulfills the following objectives:

1. AMS Verification Library : The problem of simulation trace based ver-

ification of AMS circuits is addressed by creating a library of passive online

checker modules. The primary achievements include:

• We have proposed a library of parameterized modules which can be

connected graphically on a schematic to create verification networks

for properties. We have demonstrated that this library can be easily

imported into existing commercial industrial design and verification

platforms, thereby significantly enhancing their verification capabilities.

• We have shown that the library modules can be interfaced seamlessly

with suitable auxiliary functions for verifying AMS properties that are

not direct functions of time and require further calculation.

2. Simulation Relation finding of LTSs : The problem of finding simulation

relation between LTS labeled with PORVs is addressed in this work. The

primary achievements are as follows.

93

94 6. Conclusion

• We have proposed a formal level of abstraction for the specification and

implementation controller.

• We have shown that the refinement directives on the transition guard

conditions of specification controller can be used to account for the

non-ideal situations encountered by the implementations and can help

to ensure that the implementations never violates design intent in the

strongest non-ideal environment.

• We show that the problem of checking trace-based simulation relation

in such PORV-labeled LTSs reduces to the problem of checking a path-

based simulation relation. This leads us to an efficient algorithm for

checking the simulation relation leveraging the philosophy of the well

known Kanellakis-Smolka algorithm.

3. Feature based Conformance Checking of AMS Circuits : In this work

we have introduced a feature based equivalence checking approach for AMS

circuits leveraging the online monitoring capability of AMS-VL modules.

We have shown that with the help of AMS-VL modules and the auxiliary

function modules, such notion of conformance can be translated into monitor

networks which can check conformance over simulation runs and can generate

the conformance report.

6.2. Future Work

The research work presented in thesis leaves several open directions for future

research. We outline some of them briefly.

1. In our approach we have used Verilog-AMS to implement the modules in

library. The arsenal of auxiliary functions that can be used to model cir-

cuit behaviors are mostly limited by the mathematical functional support of

Verilog-AMS. As we know, Matlab has a wide support of different in-built

auxiliary functions through its Simulink / Stateflow interface. These auxil-

iary functions can be used to check properties in various transform domains

including time and frequency domains. It would be a good exercise to port

the library developed in this thesis into the Matlab environment. The im-

pact will be two fold; Firstly the in-built rich temporal and frequency domain

functions can be used as auxiliary functions to model complex properties of

AMS circuits. Secondly, with current integration of Matlab with Mixed-

Mode simulators like Cadence®NCSIM, simulation dump monitoring and

further processing can be easily done in Matlab. This will create a unified

platform for devising new verification methodologies for AMS Circuits.

6.2. Future Work 95

2. In digital domain, the environment of the controller is constrained with the

help of assume properties (Chapter 17 of [6]) to deal with more realistic

environments. In this work, we have dealt with digital controllers where the

analog environment is unconstrained, that is, the analog plant is free to take

all possible values for the real valued variables. But typically in a controlled

environment, the dynamics of the analog plant is restricted such that the

values of the real valued variables are constrained and this restriction can

be modeled by an extension of the assume properties of the digital domain.

It may be interesting to extend the present algorithm to find simulation

relations under environment constraints modeled by assume properties.

To conclude this thesis, we feel that conformance checking is one of the main

components in the design cycle of large AMS circuits. But till date, hardly any

such methodology has been developed to check conformance between AMS circuits

and their digital controllers which are controlled by PORVs. Thus a methodology

was required to address this issue. We believe that this thesis has addressed some

of the issues for finding conformance between AMS circuits and their controllers

both formally and based on simulation traces in an effective way which in turn

can eventually be applied for other large AMS circuits.

Appendix A

Sample Auxiliary Function Mod-

ules

In this chapter we present two auxiliary function modules which we used to verify

different properties of LDO and BUCK with the help of AMS-VL modules. The

first module was used to model startup of LDOs and BUCKs in the integrated

PMU circuit. The other module was used to measure duty cycle in some properties

of a Phase Locked Loop (PLL).

A.1. Auxiliary Module to model Start-Up of BUCK

and LDOs

The following auxiliary function module models the startup behaviour of BUCKs

and LDOs. It follows the equation Vout = V0 ∗ (1 − e
t
τ), where V0 is the voltage

parameter depending upon the LDO and BUCK and τ is the time constatnt for

that LDO and BUCK respectively. The module has several enable inputs like

LDO_1_EN, LDO_2_EN (for LDOs) and BUCK_ENABLE (for BUCK) which depend-

ing upon proper signals from the circuit enable the calculation of corresponding

auxiliary functions. The ideal values of the auxiliary functions are available at

the output LDO_1_AUX, LDO_2_AUX etc.(for LDOs) and at BUCK_AUX for BUCK

Regulator.

// Verilog-AMS HDL for "Auxiliary_Function_Library",

// "AuxiliaryFunctionBuckLDO"

// Written By Debjit Pal

// Indian Institute of Technology Kharagpur

// Dept. of Computer Science and Engineering

‘include "ams_verif_defines.h"

‘default_discipline logic

module AuxiliaryFunctionBuckLDO (BUCK_AUX, LDO_1_AUX, LDO_2_AUX,

97

98 A. Sample Auxiliary Function Modules

LDO_3_AUX, LDO_4_AUX, LDO_5_AUX, LDO_6_AUX, BUCK_ENABLE,

LDO_1_EN, LDO_2_EN, LDO_3_EN, LDO_4_EN, LDO_5_EN, LDO_6_EN);

input BUCK_ENABLE, LDO_1_EN, LDO_2_EN, LDO_3_EN;

input LDO_4_EN, LDO_5_EN, LDO_6_EN;

output BUCK_AUX, LDO_1_AUX, LDO_2_AUX, LDO_3_AUX;

output LDO_4_AUX, LDO_5_AUX, LDO_6_AUX;

electrical BUCK_ENABLE, LDO_1_EN, LDO_2_EN, LDO_3_EN;

electrical LDO_4_EN, LDO_5_EN, LDO_6_EN;

electrical BUCK_AUX, LDO_1_AUX, LDO_2_AUX, LDO_3_AUX;

electrical LDO_4_AUX, LDO_5_AUX, LDO_6_AUX;

real save_buck_en_time;

real save_ldo_1_en_time;

real save_ldo_2_en_time;

real save_ldo_3_en_time;

real save_ldo_4_en_time;

real save_ldo_5_en_time;

real save_ldo_6_en_time;

integer state_buck;

integer state_ldo_1, state_ldo_2, state_ldo_3;

integer state_ldo_4, state_ldo_5, state_ldo_6;

parameter real ThresholdValue = ‘AMS_THRESHOLDVALUE_DEFAULT;

parameter real TimeTolerance = ‘AMS_TIMETOLERANCE_DEFAULT;

parameter real ValueTolerance = ‘AMS_VALUETOLERANCE_DEFAULT;

initial begin

save_buck_en_time = 0.0;

save_ldo_1_en_time = 0.0;

save_ldo_2_en_time = 0.0;

save_ldo_3_en_time = 0.0;

save_ldo_4_en_time = 0.0;

save_ldo_5_en_time = 0.0;

save_ldo_6_en_time = 0.0;

end

always @(cross(V(BUCK_ENABLE) - ThresholdValue, +1, TimeTolerance,

ValueTolerance)) begin

state_buck = 1;

save_buck_en_time = $abstime;

end

always @(cross(V(LDO_1_EN) - ThresholdValue, -1, TimeTolerance,

ValueTolerance)) begin

state_ldo_1 = 1;

save_ldo_1_en_time = $abstime;

A.1. Auxiliary Module to model Start-Up of BUCK and LDOs 99

end

always @(cross(V(LDO_2_EN) - ThresholdValue, -1, TimeTolerance,

ValueTolerance)) begin

state_ldo_2 = 1;

save_ldo_2_en_time = $abstime;

end

always @(cross(V(LDO_3_EN) - ThresholdValue, -1, TimeTolerance,

ValueTolerance)) begin

state_ldo_3 = 1;

save_ldo_3_en_time = $abstime;

end

always @(cross(V(LDO_4_EN) - ThresholdValue, -1, TimeTolerance,

ValueTolerance)) begin

state_ldo_4 = 1;

save_ldo_4_en_time = $abstime;

end

always @(cross(V(LDO_5_EN) - ThresholdValue, -1, TimeTolerance,

ValueTolerance)) begin

state_ldo_5 = 1;

save_ldo_5_en_time = $abstime;

end

always @(cross(V(LDO_6_EN) - TimeTolerance, -1, TimeTolerance,

ValueTolerance)) begin

state_ldo_6 = 1;

save_ldo_6_en_time = $abstime;

end

analog begin

@(initial_step)

begin

V(BUCK_AUX) <+ 0.0;

V(LDO_1_AUX) <+ 0.0;

V(LDO_2_AUX) <+ 0.0;

V(LDO_3_AUX) <+ 0.0;

V(LDO_4_AUX) <+ 0.0;

V(LDO_5_AUX) <+ 0.0;

V(LDO_6_AUX) <+ 0.0;

end

if(state_buck == 1)

V(BUCK_AUX) <+ 0.5*(1 - exp((save_buck_en_time -

$abstime)/10e-6));

else

100 A. Sample Auxiliary Function Modules

V(BUCK_AUX) <+ 0.0;

if(state_ldo_1 == 1)

V(LDO_1_AUX) <+ 3.4*(1 - exp((save_ldo_1_en_time -

$abstime)/50e-6));

else

V(LDO_1_AUX) <+ 0.0;

if(state_ldo_2 == 1)

V(LDO_2_AUX) <+ 3.4*(1 - exp((save_ldo_2_en_time -

$abstime)/50e-6));

else

V(LDO_2_AUX) <+ 0.0;

if(state_ldo_3 == 1)

V(LDO_3_AUX) <+ 3.4*(1 - exp((save_ldo_3_en_time -

$abstime)/50e-6));

else

V(LDO_3_AUX) <+ 0.0;

if(state_ldo_4 == 1)

V(LDO_4_AUX) <+ 3.4*(1 - exp((save_ldo_4_en_time -

$abstime)/50e-6));

else

V(LDO_4_AUX) <+ 0.0;

if(state_ldo_5 == 1)

V(LDO_5_AUX) <+ 3.4*(1 - exp((save_ldo_5_en_time -

$abstime)/50e-6));

else

V(LDO_5_AUX) <+ 0.0;

if(state_ldo_6 == 1)

V(LDO_6_AUX) <+ 3.4*(1 - exp((save_ldo_6_en_time -

$abstime)/50e-6));

else

V(LDO_6_AUX) <+ 0.0;

end

endmodule

A.2. Auxiliary Module to measure Frquency of PLL

The following module calculates the frequency of an input signal at in port and produces

output voltage at out port equal to the frequency value.

A.2. Auxiliary Module to measure Frquency of PLL 101

// Verilog-AMS HDL for "Auxiliary_Function_Library"

// "DutyCycleMeasure"

// Written By Debjit Pal

// Indian Institute of Technology Kharagpur

// Dept. of Computer Science and Engineering

‘include"disciplines.vams"

‘include"constants.vams"

‘timescale 1ns / 1ps

module FrequencyDetector(enable, in, out);

output out;

input in, enable;

logic in, enable;

electrical out;

real Vout;

integer oddEvenCount;

real saveTime1 = 0.0, saveTime2 = 0.0, timePeriod = 0.0;

always@(posedge in) begin

if(oddEvenCount == 1) begin

oddEvenCount = 0;

saveTime1 = $abstime;

timePeriod = (saveTime1 > saveTime2) ? saveTime1

- saveTime2 : saveTime2 - saveTime1;

end

else if(oddEvenCount == 0) begin

oddEvenCount = 1;

saveTime2 = $abstime;

timePeriod = (saveTime1 > saveTime2) ? saveTime1

- saveTime2 : saveTime2 - saveTime1;

end

else begin

oddEvenCount = 0;

saveTime1 = $abstime;

saveTime2 = $abstime;

timePeriod = (saveTime1 > saveTime2) ? saveTime1

- saveTime2 : saveTime2 - saveTime1;

end

if(timePeriod > 0)

Vout = 1/(timePeriod*1e9);

else

Vout = 0.0;

102 A. Sample Auxiliary Function Modules

end

analog begin

if(enable)

V(out) <+ Vout;

else

V(out) <+ 0.0;

end

endmodule

Appendix B

Testcases and Sample Properties

of AMS-VL

B.1. Low Dropout Regulator (LDO)

A low dropout (LDO) regulator is a linear DC voltage regulator that can operate with a

very small input-output differential voltage. They are mainly used to provide regulated

output voltage. Figure B.1 shows a simplified block diagram of a typical LDO regulator

circuit. The operational modes of this LDO regulator are as follows:

• Shutdown Mode: If enable is not asserted, or either the bias current, or the

input supply voltage are not within the specified range, then the LDO regulator

remains in shutdown mode.

• Start-up Mode: When all the enables, bias current, and input supply voltage

are within the specified range, the LDO regulator enters into the start-up mode of

operation.

• Regulatory Mode: When the output voltage reaches the desired steady state

value is the start-up mode, the LDO regulator switches to the regulatory mode.

In this mode of operation steady output voltage is maintained.

• Dropout Mode: For proper functionality of the LDO regulator, the relation:

Vin > Vout + Vmin_drop

should hold, where Vmin_drop is the minimum dropout voltage. If the input voltage

starts falling, then the output voltage will remain constant as long as the above

relation holds. But if the input-output differential voltage falls below the dropout

value, then the output voltage starts falling below its rated value to keep the input-

output difference above the dropout value. This mode of the LDO regulator, when

output voltage falls with the fall of input voltage, is called the dropout mode of

operation.

103

104 B. Testcases and Sample Properties of AMS-VL

START
-UP

CKT. VOLT.

REF ERROR
AMP

VIN

CURRENT SENSE
ELEMENT

ELEMENT

PASS

P
R

O
T

E
C

T
IO

N
C

IR
C

U
IT

BACKFEED

NETWORK

Figure B.1: Block Diagram of an LDO Regulator Circuit [59].

• Short Circuit Mode: When the output current crosses a certain current limit,

the LDO regulator enters into the short circuit mode of operation.

The output voltage of the LDO regulator in different modes of operation has been shown

in Figure B.2.

B.2. Voltage Mode Controlled BUCK Regulator

A buck regulator is a step-down DC-DC converters. Buck regulators are used to step

down a higher level, unregulated input voltage to a regulated output voltage. Figure B.3

shows a simplified block diagram of a typical buck regulator circuit with the following

operational modes.

• Shutdown Mode: If enable is de-asserted, or either the bias current, or the input

supply voltage are not within the desired range, then the buck regulator remains

in the shutdown mode of operation.

• PWM Mode: When all the enabling conditions are asserted with the bias current,

and the input supply voltage within the specified ranges, then the output voltage of

the buck regulator starts rising. Thereby it enters into the pulse width modulation

(PWM) [32] mode of operation through the start-up phase.

• PFM Mode: At very light loads, the regulator enters the pulse frequency modu-

lation (PFM) mode, and operates with reduced switching frequency and quiescent

current to maintain high efficiency. During the PFM mode of operation, the reg-

ulator’s output voltage is slightly higher than the nominal output voltage of the

PWM mode of operation. There are two sub-categories of the PFM mode of

operation. They are:

– PFM_rise Mode: In this mode, the output voltage rises from the lower

voltage limit to the upper voltage limit of the PFM mode. The pMOS switch

B.2. Voltage Mode Controlled BUCK Regulator 105

Start-up Start-up
Regulatory

Short-ckt Shutdown

time

VOUT

EN

VIN

V
o
lt

a
g
e

t1 t2 t3 t4 t5 t6

Regulatory Dropout

Figure B.2: Output Voltage of LDO Regulator in Different Modes of Operation.

Control

Logic
Driver

Soft

Start

Error
Amp

Current Limit
Comparator

Comparator
PFM Current

PWM
Comparator

Ref1

Ref2

Zero Crossing
Comparator

+

-
+

-

SWVINEN

FB GND

+
-

pfm_low

pfm_hi

1.0V
Vcomp

+

-

+

-

+

-

VREF

0.5V
Frequency

Compensation

Shutdown

Thermal
Bandgap

Lockout

Ramp

Generator

1 MHz

Oscillator

Undervoltage

Figure B.3: Block Diagram of a Buck Regulator Circuit [47].

106 B. Testcases and Sample Properties of AMS-VL

PFM_rise Mode Moderate to Heavy Loads
PWM Mode at

time

Lower Voltage Limit in PFM Mode

Upper Voltage Limit in PFM Mode
V

o
lt

a
g
e

t1 t2 t3

PFM_fall Mode

PFM Mode at Light Loads

Figure B.4: Output Voltage of Buck Regulator Circuit [47].

remains on and nMOS switch remains off until the inductor current attains

its peak value. Similarly, the nMOS switch remains on and the pMOS switch

remains off until the inductor current ramps to zero.

– PFM_fall Mode: In this mode the output voltage falls from the upper voltage

limit to the lower voltage limit of the PFM mode with both the pMOS and

the nMOS switches at off positions.

The output voltage of a buck regulator in different modes of operation has been shown

in Figure B.4 [47].

B.3. Sample Properties for Low Dropout Regula-

tors

We verify the following set of properties on an Integrated network of Low Dropout

Regulators (LDO) consisting of 6 LDOs. The inter-connection network has a well defined

switching sequence. LDO-1 will startup automatically when the circuit has been excited

with proper test bench. LDO-1 will trigger LDO-2 and in turn LDO-2 will trigger LDO-

3. LDO-4 will be triggered by LDO-3. LDO-5 will be triggered by proper startup of

LDO-1 and LDO-2 and LDO-6 will get its trigger if LDO-3, LDO-4 and LDO-5 have

started properly.

Property B.3.1 If LDO-1 is enabled then it will start within next 20 µs.

Property B.3.2 If LDO-1 enters in the startup mode, then within next 80 µs LDO-2

will start up.

B.3. Sample Properties for Low Dropout Regulators 107

Property B.3.3 If LDO-2 enters in the startup mode, then within next 100 µs LDO-3

will start up.

Property B.3.4 If LDO-3 enters in the startup mode, then within next 100 µs LDO-4

will start up.

Property B.3.5 If LDO-1 and LDO-2 have entered in the startup mode in proper se-

quence, then LDO-5 will enter startup mode eventually.

Property B.3.6 If LDO-3, LDO-4 and LDO-5 have entered startup mode in proper

sequence, then LDO-6 will enter startup mode eventually.

Property B.3.7 If LDO-1 is low enabled, then within next 15 µs LDO-1 will cross

0.3V.

Property B.3.8 If LDO-2 is low enabled, then within next 20 µs LDO-2 will cross

0.3V.

Property B.3.9 If LDO-3 is low enabled, then within next 18 µs LDO-3 will cross

0.3V.

Property B.3.10 If LDO-4 is low enabled, then within next 15 µs LDO-4 will enter

startup mode.

Property B.3.11 If LDO-5 is low enabled, then within next 15 µs, LDO-5 will enter

startup mode.

Property B.3.12 If LDO-6 is low enabled, then within next 15 µs, LDO-6 will enter

startup mode.

Property B.3.13 After LDO-1 enters startup mode, it will follow the auxiliary function

specified by V(LDO_1_AUX) for next 430 µs with a tolerance value of 0.57V.

Property B.3.14 After LDO-2 enters startup mode, it will follow the auxiliary function

specified by V(LDO_2_AUX) for next 430 µs with a tolerance value of 0.57V.

Property B.3.15 After LDO-3 enters startup mode, it will follow the auxiliary function

specified by V(LDO_3_AUX) for next 350 µs with a tolerance value of 0.6V.

Property B.3.16 After LDO-4 enters startup mode, it will follow the auxiliary function

specified by V(LDO_4_AUX) for next 350 µs with a tolerance value of 0.6V.

Property B.3.17 After LDO-5 enters startup mode, it will follow the auxiliary function

specified by V(LDO_5_AUX) for next 350 µs with a tolerance value of 0.6V.

108 B. Testcases and Sample Properties of AMS-VL

Property B.3.18 After LDO-6 enters startup mode, it will follow the auxiliary function

specified by V(LDO_6_AUX) for next 300 µs with a tolerance value of 0.6V.

Property B.3.19 Within 300 µs of entering in the startup mode, LDO-1 will enter

steady state mode.

Property B.3.20 Within 280 µs of entering in the startup mode, LDO-2 will enter

steady state mode.

Property B.3.21 Within 300 µs of entering in the startup mode, LDO-3 will enter

steady state mode.

Property B.3.22 Within 250 µs of entering in the startup mode, LDO-4 will enter

steady state mode.

Property B.3.23 Within 250 µs of entering in the startup mode, LDO-5 will enter

steady state mode.

Property B.3.24 Within 250 µs of entering in the startup mode, LDO-6 will enter

steady state mode.

Property B.3.25 After V(out)LDO_1 crosses 3.3V and enters steady state, the voltage

will remain within 3.3V and 3.4V for next 5 µs and will check it forever.

Property B.3.26 After V(out)LDO_2 crosses 3.3V and enters steady state, the voltage

will remain within 3.3V and 3.4V for next 10 µs and will check it forever.

Property B.3.27 230 µs after entering into startup mode, LDO-3 will enter into the

steady-state mode and V(out)LDO_3 will remain within 3.3V and 3.4V for next 220 µs.

Property B.3.28 235 µs after entering into startup mode, LDO-5 will enter into the

steady-state mode and V(out)LDO_5 will remain within 3.3V and 3.4V for next 200 µs.

B.4. Sample Properties for BUCK Regulators

We verify the following set of properties on an Integrated network of BUCK Regulators

consisting of 2 BUCK Regulators. The interconnected network has a well defined switch-

ing sequence. BUCK-1 will startup initially when the circuit is excited with proper test

bench. BUCK-2 will get triggered after BUCK-1 has entered startup mode.

Property B.4.1 After BUCK-1 gets enabled, within 60 µs, it will enter startup mode.

Property B.4.2 After BUCK-2 gets enabled, within 60 µs, it will enter startup mode.

B.5. Sample Properties for Integrated Power Management Unit 109

Property B.4.3 After BUCK-1 enters startup mode, V(FB)BUCK_1 will follow the

auxiliary function specified by V(BUCK_1_AUX) for 200 µs with a tolerance value of

0.3V.

Property B.4.4 After BUCK-2 enters startup mode, V(FB)BUCK_2 will follow the

auxiliary function specified by V(BUCK_2_AUX) for 200 µs with a tolerance value of

0.35V.

Property B.4.5 After BUCK-1 enters PWM mode, the frequency of oscillation will

become 2.0MHz with a tolerance of 0.1MHz within next 20 µs and will check it forever

at a regular interval of 10 µs.

Property B.4.6 After BUCK-1 enters PWM mode, the duty cycle of switching will

become 0.0053 with a tolerance of 0.0001 within next 20 µs and will check it forever at a

regular interval of 10 µs.

Property B.4.7 After BUCK-1 enters startup mode, the frequency of oscillation of

BUCK-2 will become 2.0MHz with a tolerance of 0.1MHz within next 130 µs and will

check it forever at a regular interval of 10 µs.

Property B.4.8 After BUCK-1 enters startup mode, the duty cycle of switching of

BUCK-2 will become 0.0053 with a tolerance of 0.0001 within next 130 µs and will check

it forever at a regular interval of 10 µs.

Property B.4.9 After 190 µs of entering startup mode, BUCK-1 will enter in steady

state mode and its steady state voltage will remain within 0.5V and 0.56V for next 10 µs

and will check it forever at a regular interval of 10 µs.

Property B.4.10 290 µs after BUCK-1 enters startup mode, BUCK-2 will enter in

steady state mode and its steady state voltage will remain within 0.5V and 0.56V for

next 10 µs and will check it forever at a regular interval of 10 µs.

B.5. Sample Properties for Integrated Power Man-

agement Unit

We verify the following set of properties on an Integrated Power Management Unit

(PMU) consisting of 1 BUCK Regulator and 4 Low Dropout Regulators (LDO). The

PMU has a well defined switching sequence. BUCK will startup after the circuit has

been excited with the proper test bench. BUCK-1 will trigger LDO-1 and in turn LDO-1

will trigger LDO-2. LDO-2 will trigger LDO-3. For successful triggering of LDO-4, both

BUCK-1 and LDO-2 should startup properly.

110 B. Testcases and Sample Properties of AMS-VL

Property B.5.1 If the BUCK Regulator is a enabled then within next 140 µs the output

of the BUCK Regulator will be above 0.3V.

Property B.5.2 If the BUCK regulator enters startup mode then within 160 µs the

LDO-1 enters the startup mode.

Property B.5.3 If the LDO-1 enters the startup mode then within 100 µs the LDO-2

enters startup mode.

Property B.5.4 If the LDO-2 enters the startup mode then within 100 µs the LDO-3

enters startup mode.

Property B.5.5 If BUCK and LDO-2 enters startup then eventually LDO-4 will startup

too.

Property B.5.6 If the BUCK Regulator enters startup mode then output voltage will

follow the auxiliary function V(buck_aux) for 200 µs with a tolerance of 0.5V.

Property B.5.7 If the LDO-1 enters startup mode then output voltage of LDO-1 will

follow the auxiliary function described by V(ldo1_aux) with a tolerance of 0.6 V for 360

µs.

Property B.5.8 If the LDO-2 enters startup mode then output voltage of LDO-2 will

follow the auxiliary function specified by V(ldo2_aux) with a tolerance of 0.6 V for 360

µs.

Property B.5.9 If the LDO-3 enters startup mode then output voltage of LDO-3 will

follow the auxiliary function described by V(ldo3_aux) with a tolerance of 0.6V for 280

µs.

Property B.5.10 If the LDO-4 enters startup mode then output voltage of LDO-4 will

follow the auxiliary function described by V(ldo4_aux) with a tolerance of 0.6V for 280

µs.

Property B.5.11 If the LDO-1 enters the startup mode then within 340 µs it will be

in the steady state mode.

Property B.5.12 If the LDO-2 enters the startup mode then within 340 µs it will be

in the steady state mode.

Property B.5.13 If the LDO-3 enters the startup mode then within 260 µs it will be

in the steady state mode.

Property B.5.14 If the LDO-4 enters the startup mode then within 260 µs it will be

in the steady state mode.

B.5. Sample Properties for Integrated Power Management Unit 111

Property B.5.15 If LDO-1 is low-enabled then within next 20 µs it should start up.

Property B.5.16 If LDO-2 is low-enabled then within next 20 µs it should start up.

Property B.5.17 If LDO-3 is low-enabled then within next 20 µs it should start up.

Property B.5.18 If LDO-4 is low-enabled then within next 20 µs it should start up.

Property B.5.19 If LDO-1 is at steady state mode then the output voltage will be

around 3.4V with a tolerance of 0.05V.

Property B.5.20 If LDO-2 is at steady state mode then the output voltage will be

around 3.4V with a tolerance of 0.05V.

Property B.5.21 If LDO-3 is at steady state mode then the output voltage will be

around 3.4V with a tolerance of 0.05V.

Property B.5.22 If LDO-4 is at steady state mode then the output voltage will be

around 3.4V with a tolerance of 0.05V.

Property B.5.23 If LDO-1 is low-enabled then within next 360 µs it should be at steady

state.

Property B.5.24 If LDO-2 is low-enabled then within next 360 µs it should be at steady

state.

Property B.5.25 If LDO-3 is low-enabled then within next 280 µs it should be at steady

state.

Property B.5.26 If LDO-4 is low-enabled then within next 280 µs it should be at steady

state.

Property B.5.27 After BUCK enters startup mode, the output voltage will be 0.5V

with a tolerance of 0.07V.

Property B.5.28 After 350µs of LDO-1 enters startup mode V(out)LDO1 will remain

within 3.3V and 3.4V for next 80µs.

Property B.5.29 After 325µs of LDO-2 enters startup, V(out)LDO2 will remain within

3.3V and 3.5V for next 40µs.

Property B.5.30 After 250µs of LDO-3 enters startup, V(out)LDO3 will remain within

3.3V and 3.5V for next 30µs.

Property B.5.31 After 250µs of LDO-3 enters startup, V(out)LDO3 will remain within

3.3V and 3.5V for next 30µs.

Property B.5.32 At PWM mode, switching frequency of BUCK Regulator will become

2MHz eventually with a tolerance of 0.1MHz.

Property B.5.33 At PWM mode, the duty ratio will eventually become 0.2.

Bibliography

[1] Accellera. http://www.accellera.org/.

[2] Accellera Open Verification Library. http://www.accellera.org/activities/ovl.

[3] Accellera Verilog-AMS Language Reference Manual Analog and Mixed
Signal Extensions to Verilog-HDL, version 2.4 edition (November 2006).
http://www.accellera.org/downloads/standards/v-ams.

[4] Cadence AMS Simulator
. http://www.vtvt.ece.vt.edu/vlsidesign/tutorialmixedsignal_intro.php.

[5] Cadence NCSIM. http://www.cadence.com/products/cic/ams_designer.

[6] IEEE Std 1800-2009, "IEEE Standard for System Verilog: Unified Hardware Design,
Specification and Verification Language, IEEE, 2010.".

[7] IEEE Std 1850-2010, IEEE Standard for Property Specification Languages (PSL),
IEEE, 2010.

[8] MetiTarski Theorem Prover. http://www.cl.cam.ac.uk/~lp15/papers/Arith/.

[9] Open Vera Assertions. http://www.open-vera.com/.

[10] PHAver. http://www-verimag.imag.fr/~frehse/phaver_web/.

[11] PVS Theorem Prover. http://pvs.csl.sri.com/.

[12] VHDL-AMS. http://www.eda.org/twiki/bin/view.cgi/P10761/WebHome.

[13] Aceto, L., Ingolfsdottir, A., and Srba, J. The Algorithmics of Bisimilarity.
Cambridge University Press.

[14] Althoff, M., Yaldiz, S., Rajhans, A., Li, X., Krogh, B. H., and Pileggi,

L. T. Formal Verification of Phase-Locked Loops using Reachability Analysis and
Continuization. In 2011 IEEE/ACM International Conference on Computer-Aided
Design, San Jose, California, USA, November 7-10, 2011, IEEE, pp. 659–666.

[15] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-

H., Nicollin, X., Olivero, A., Sifakis, J., and Yovine, S. The Algorithmic
Analysis of Hybrid Systems. Theoretical Computer Science 138, 1 (1995), 3–34.

[16] Alur, R., Courcoubetis, C., Henzinger, T. A., and Ho, P.-H. Hybrid
Automata: An Algorithmic Approach to the Specification and Verification of Hybrid
Systems. In Hybrid Systems (1992), vol. 736 of Lecture Notes in Computer Science,
Springer, pp. 209–229.

[17] Alur, R., Feder, T., and Henzinger, T. A. The Benefits of Relaxing Punc-
tuality. Journal of ACM 43, 1 (1996), 116–146.

113

http://www.accellera.org/
http://www.accellera.org/activities/ovl
http://www.accellera.org/downloads/standards/v-ams
http://www.vtvt.ece.vt.edu/vlsidesign/tutorialmixedsignal_intro.php
http://www.cadence.com/products/cic/ams_designer
http://www.cl.cam.ac.uk/~lp15/papers/Arith/
http://www.open-vera.com/
http://www-verimag.imag.fr/~frehse/phaver_web/
http://pvs.csl.sri.com/
http://www.eda.org/twiki/bin/view.cgi/P10761/WebHome

114 BIBLIOGRAPHY

[18] Alur, R., and Henzinger, T. A. Real-Time Logics: Complexity and Expres-
siveness. Information and Computation 104, 1 (1993), 390–401.

[19] Alur, R., and Henzinger, T. A. A Really Temporal Logic. Journal of ACM
41, 1 (1994), 181–204.

[20] Baier, C., and Katoen, J.-P. Principles of Model Checking. MIT Press, 2008.

[21] Balivada, A., Hoskote, Y. V., and Abraham, J. A. Verification of Transient
Response of Linear Analog Circuits. In IEEE VLSI Test Symposium (April 30 -
May 3,1995, Princeton, New Jersey, USA), IEEE Computer Society, pp. 42–47.

[22] Bouali, A., and de Simone, R. Symbolic Bisimulation Minimisation. In
Computer Aided Verification (Fourth International Workshop, CAV ’92, Montreal,
Canada, June 29 - July 1,1992), G. von Bochmann and D. K. Probst, Eds., vol. 663
of Lecture Notes in Computer Science, Springer, pp. 96–108.

[23] Browne, M. C., Clarke, E. M., Dill, D. L., and Mishra, B. Automatic
Verification of Sequential Circuits Using Temporal Logic. IEEE Transaction on
Computers 35, 12 (1986), 1035–1044.

[24] Browne, M. C., Clarke, E. M., and Grumberg, O. Characterizing Finite
Kripke Structures in Propositional Temporal Logic. Theoretical Computer Science
59 (1988), 115–131.

[25] Bryant, R. E. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35, 8 (1986), 677–691.

[26] Burch, J. R., Clarke, E. M., Long, D. E., Mcmillan, K. L., and Dill, D.

Symbolic Model Checking for Sequential Circuit Verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 13 (1993), 401–424.

[27] Clarke, E. M., Donzé, A., and Legay, A. Statistical Model Checking of
Mixed-Analog Circuits with an Application to a Third Order Delta-Sigma Modu-
lator. In Hardware and Software: Verification and Testing, 4th International Haifa
Verification Conference, HVC 2008, Haifa, Israel, October 27-30, 2008. Proceedings
(2009), vol. 5394 of Lecture Notes in Computer Science, Springer, pp. 149–163.

[28] Dang, T., Donzé, A., and Maler, O. Verification of Analog and Mixed-Signal
Circuits Using Hybrid System Techniques. In Formal Methods in Computer-Aided
Design, 5th International Conference, FMCAD 2004, Austin, Texas, USA, Novem-
ber 15-17, 2004, Proceedings, vol. 3312 of Lecture Notes in Computer Science,
Springer, pp. 21–36.

[29] Dang, T., and Nahhal, T. Randomized Simulation of Hybrid Systems For
Circuit Validation. In Forum on specification and Design Languages, FDL 2006,
September 19-22, 2006, Darmstadt, Germany, Proceedings, ECSI, pp. 9–15.

[30] Dastidar, T. R., and Chakrabarti, P. P. A Verification System for Tran-
sient Response of Analog Circuits. ACM Transaction on Design Automation and
Electronic System 12, 3 (2007).

[31] Denman, W., Akbarpour, B., Tahar, S., Zaki, M. H., and Paulson, L. C.

Formal Verification of Analog Designs using MetiTarski. In Proceedings of 9th Inter-
national Conference on Formal Methods in Computer-Aided Design, FMCAD 2009,
15-18 November 2009, Austin, Texas, USA, IEEE, pp. 93–100.

BIBLIOGRAPHY 115

[32] Erickson, R., and Maksimovic, D. Fundamentals of Power Electronics. Kluwer
Academic Publishers, 2001.

[33] Frehse, G., Krogh, B. H., and Rutenbar, R. A. Verifying Analog Oscillator
Circuits using Forward/Backward Abstraction Refinement. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE 2006, Munich, Ger-
many, March 6-10, 2006, European Design and Automation Association, Leuven,
Belgium, pp. 257–262.

[34] Frehse, G., Krogh, B. H., Rutenbar, R. A., and Maler, O. Time Domain
Verification of Oscillator Circuit Properties. Electr. Notes Theor. Comput. Sci. 153,
3 (2006), 9–22.

[35] Ghosh, A., and Vemuri, R. Formal Verification of Synthesized Analog Designs.
In ICCD (1999), pp. 40–45.

[36] Gupta, S., Krogh, B. H., and Rutenbar, R. A. Towards Formal Verification
of Analog Designs. In ICCAD (November 7-11, 2004, San Jose, CA, USA), IEEE
Computer Society / ACM, pp. 210–217.

[37] Hartong, W., Klausen, R., and Hedrich, L. Formal Verification for Nonlinear
Analog Systems: Approaches to Model and Equivalence Checking. In Advanced
Formal Verification. Springer, 2004, pp. 205–245.

[38] Hedrich, L., and Barke, E. A Formal Approach to Verification of Linear Analog
Circuits with Parameter Tolerances. In DATE (Le Palais des Congrès de Paris,
Paris, France,February 23-26, 1998), IEEE Computer Society, pp. 649–654.

[39] Hedrich, L., and Barke, E. A Formal Approach to Nonlinear Analog Circuit
Verification. In ICCAD (San Jose, California, USA, November 5-9,1995), R. L.
Rudell, Ed., IEEE Computer Society, pp. 123–127.

[40] Henzinger, M. R., Henzinger, T. A., and Kopke, P. W. Computing Simu-
lations on Finite and Infinite Graphs. In Foundations of Computer Science (1995),
pp. 453–462.

[41] Henzinger, T. A. The Theory of Hybrid Automata. In Proceedings, 11th Annual
IEEE Symposium on Logic in Computer Science (New Brunswick, New Jersey, USA,
July 27-30, 1996), IEEE Computer Society, pp. 278–292.

[42] Henzinger, T. A., Kopke, P. W., Puri, A., and Varaiya, P. What’s De-
cidable about Hybrid Automata? Journal of Computer and System Sciences 57, 1
(1998), 94–124.

[43] Horowitz, M., Jeeradit, M., Lau, F., Liao, S., Lim, B., and Mao, J.

Fortifying Analog Models with Equivalence Checking and Coverage Analysis. In
47th Design Automation Conference,DAC 2010, Anaheim, California, USA, (July
13-18,2010), S. S. Sapatnekar, Ed., ACM, pp. 425–430.

[44] Kanellakis, P. C., and Smolka, S. A. CCS Expressions, Finite State Processes,
and Three Problems of Equivalence. Information and Computation 86, 1 (1990),
43–68.

[45] Kanellakis, P. C., and Smolka, S. A. CCS Expressions, Finite State Processes,
and Three Problems of Equivalence. In Proceedings of the Second Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada (August 17-19, 1983), pp. 228–240.

116 BIBLIOGRAPHY

[46] Little, S., and Mayers, C. Abstract Modeling and Simulation Aided Verification
of Analog/Mixed-Signal Circuits. In Formal Verification of Analog Circuits (2008).

[47] LM3670. A DC-DC converter from National Semiconductor.
http://www.national.com/ds/LM/LM3670.pdf.

[48] Maler, O., and Nickovic, D. Monitoring Temporal Properties of Continu-
ous Signals. In Joint International Conferences on Formal Modelling and Analy-
sis of Timed Systems, (FORMATS) Formal Techniques in Real-Time and Fault-
Tolerant Systems, (FTRTFT), Grenoble, France, Proceedings (September 22-24,
2004), vol. 3253 of Lecture Notes in Computer Science, Springer, pp. 152–166.

[49] Maler, O., Nickovic, D., and Pnueli, A. Checking Temporal Properties of
Discrete, Timed and Continuous Behaviors. In Pillars of Computer Science, Essays
Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday (2008),
vol. 4800 of Lecture Notes in Computer Science, Springer, pp. 475–505.

[50] Mukherjee, S., and Dasgupta, P. Auxiliary State Machines and Auxiliary
Functions: Constructs for Extending AMS Assertions. In 24th International Con-
ference on VLSI Design, IIT Madras, Chennai, India (2-7 January 2011), IEEE,
pp. 52–57.

[51] Mukherjee, S., Dasgupta, P., and Mukhopadhyay, S. Auxiliary Specifica-
tions for Context-Sensitive Monitoring of AMS Assertions. IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems 30, 10 (2011), 1446–
1457.

[52] Mukherjee, S., Dasgupta, P., Mukhopadhyay, S., Little, S., Havlicheck,

J., and Chandrasekaran, S. Synchronizing AMS Assertions with AMS Simu-
lation : From Theory to Practice. ACM Transaction on Design Automation and
Electronic System Accepted for Publication (2012).

[53] Mukhopadhyay, R., Panda, S. K., Dasgupta, P., and Gough, J. Instru-
menting AMS assertion Verification on Commercial Platforms. ACM Transaction
on Design Automation and Electronic System 14, 2 (2009).

[54] Narayanan, R., Akbarpour, B., Zaki, M. H., Tahar, S., and Paulson,

L. C. Formal verification of analog circuits in the presence of noise and process
variation. In DATE (Dresden,Germany, March 8-12, 2010), IEEE, pp. 1309–1312.

[55] Nickovic, D. Checking Timed and Hybrid Poperties : Theory and Applications.
PhD thesis, University of Joseph Fourier, 2008.

[56] Paige, R., and Tarjan, R. E. Three Partition Refinement Algorithms. Society
for Industrial and Applied Mathematics (SIAM) Journal on Computing 16, 6 (1987),
973–989.

[57] Pnueli, A. The Temporal Logic of Programs. In 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA (, 31 October -
1 November 1977), IEEE Computer Society, pp. 46–57.

[58] Ranzato, F., and Tapparo, F. A New Efficient Simulation Equivalence Algo-
rithm. In 22nd IEEE Symposium on Logic in Computer Science (Logic in Computer
Science 2007), Wroclaw, Poland, Proceedings (10-12 July 2007), IEEE Computer
Society, pp. 171–180.

BIBLIOGRAPHY 117

[59] Rincon-Mora, G. Current Efficient, low voltage, low dropout regulators. PhD
thesis, Georgia Institute of Technology, Atlanta, 1996.

[60] Salem, A. Semi-formal verification of VHDL-AMS descriptions. In IEEE Interna-
tional Symposium on Circuits and Systems. 2002, pp. 333–336.

[61] Seshadri, S., and Abraham, J. A. Frequency Response Verification of Analog
Circuits Using Global Optimization Techniques. Journal of Electronic Testing 17,
5 (Oct. 2001), 395–408.

[62] Silva, B., Stursberg, O., Krough, B., and Engell, S. An Assessment of The
Current Status of Logorithmic Approaches to The Verification of Hybrid Systems.
In in Proceedings.,of the 40th IEEE Conference on Decision and Control, vol. 3.
2001, pp. 2867–2874.

[63] Singh, A., and Li, P. On Behavioral Model Equivalence Checking for Large
Analog/Mixed Signal Systems. In Proceedings of the International Conference on
Computer-Aided Design (Piscataway, NJ, USA, 2010), ICCAD ’10, IEEE Press,
pp. 55–61.

[64] Steinhorst, S., and Hedrich, L. Advanced Methods for Equivalence Checking
of Analog Circuits with Strong Nonlinearities. Formal Methods in System Design
36, 2, 131–147.

[65] Steinhorst, S., and Hedrich, L. Model Checking of Analog Systems using an
Analog Specification Language. In Design, Automation and Test in Europe, DATE
2008, Munich, Germany (March 10-14,2008), IEEE, pp. 324–329.

[66] Tiwary, S. K., Gupta, A., Phillips, J. R., Pinello, C., and Zlatanovici, R.

First Steps Towards SAT-based Formal Analog Verification. In 2009 International
Conference on Computer-Aided Design (ICCAD’09), November 2-5, 2009, San Jose,
CA, USA, IEEE, pp. 1–8.

[67] Walter, D. C. Verification of Analog and Mixed-Signal Circuits using Symbolic
Methods. PhD thesis, University of Utah, 2007.

[68] Yan, J., Zhang, J., and Xu, Z. Finding Relations Among Linear Constraints.
In AISC (2006), pp. 226–240.

[69] Zhnag, Y., Sankaranarayanan, S., and Somenzi, F. Piecewiase Linear Mod-
eling of Nonlinear devices for Formal Verification of Analog Circuits. In 2012
IEEE/ACM Formal Methods in Computer-Aided Design (FMCAD), Cambridge,
UK, October 22-25, 2012, pp. 196–203.

List of Publications

Conference

1. Debjit Pal, P. Dasgupta, S.Mukhopadhyay, “A Library for Passive Online
Verification of Analog and Mixed-Signal Circuits”, Published in 25th IEEE
International Conference on VLSI Design (2012), IEEE Computer Society,
DOI 10.1109/VLSID.2012.98, Pages 364 - 369.

Journal

1. Debjit Pal Santhosh Prabhu M, Pallab Dasgupta, “Formal Verification of
Transition Systems with Predicate Inputs”, communicated to IEEE Trans-
action on Computer-Aided Design (IEEE TCAD), 2012.

119

	Certificate of Approval
	Certificate
	Declaration
	Acknowledgement
	List of Abbreviations
	List of Symbols
	Abstract
	Introduction
	Motivation and Objectives
	Summary of Contributions
	AMS Verification Library
	Verification of Simulation Relations
	Feature based Online Conformance Checking

	Organization of the Thesis

	Background and Literature Review
	Assertions and Open Verification Library
	Logic Languages STL and AMS-LTL
	Equivalence and Simulation Relations
	Algorithm for Equivalence Checking
	Kanellakis-Smolka Algorithm

	Concluding Remarks

	AMS Verification Library
	Definitions and Preliminaries
	The Structure of AMS Verification Library
	CaptureAndHold
	GenerateDelay
	ArithmeticOperator
	EventDetector
	EventDetector_Extended
	PredicateEvaluator
	PredicateEvaluator_Extended
	BoolOperator
	GlobalOperator
	EventuallyOperator
	UntilOperator
	PredicateAssert

	Representative Verification Networks with AMS-VL Components
	Tool Flow and Implementation Issues
	Synchronization with the AMS Simulator
	Spawning Threads for Overlapping Matches

	Simulation Results
	Concluding Remarks

	Verification of Simulation Relations
	Simulation Relation Finding Methodology
	Formal Model of Computation

	Methodology and Tool Flow to find Simulation Relation
	Pre-Process Steps

	Concluding Remarks

	Feature based Equivalence Checking with AMS-VL
	Different topologies for Online Conformance
	Examples of Conformance Checking Networks
	Example of Topology-I
	Example of Topology-II
	Example of Topology-III
	Example of Topology-IV

	Concluding Remark

	Conclusion
	Summary of Achievements
	Future Work

	Appendices
	Sample Auxiliary Function Modules
	Auxiliary Module to model Start-Up of BUCK and LDOs
	Auxiliary Module to measure Frquency of PLL

	Testcases and Sample Properties of AMS-VL
	Low Dropout Regulator (LDO)
	Voltage Mode Controlled BUCK Regulator
	Sample Properties for Low Dropout Regulators
	Sample Properties for BUCK Regulators
	Sample Properties for Integrated Power Management Unit

	Bibliography

